At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Add. Your answer should be an expanded polynomial in standard form.

[tex]\[ \left(-4b^3 + b - 1\right) + \left(6b - 6\right) = \][/tex]

[tex]\[ \square \][/tex]


Sagot :

To add the given polynomials [tex]\((-4b^3 + b - 1) + (6b - 6)\)[/tex], we'll proceed through the following steps:

1. Write down the polynomials:
[tex]\[ \left(-4b^3 + b - 1\right) \][/tex]
[tex]\[ \left(6b - 6\right) \][/tex]

2. Combine like terms:
- The term with [tex]\(b^3\)[/tex] is [tex]\(-4b^3\)[/tex]. There are no other [tex]\(b^3\)[/tex] terms to combine with.
- The terms with [tex]\(b\)[/tex] are [tex]\(b\)[/tex] and [tex]\(6b\)[/tex]. Adding these yields [tex]\(b + 6b\)[/tex].
- The constant terms are [tex]\(-1\)[/tex] and [tex]\(-6\)[/tex]. Adding these yields [tex]\(-1 - 6\)[/tex].

3. Add the coefficients for the like terms:
- For the [tex]\(b^3\)[/tex] term: [tex]\(-4b^3\)[/tex]
- For the [tex]\(b\)[/tex] term: [tex]\(b + 6b = 7b\)[/tex]
- For the constant term: [tex]\(-1 - 6 = -7\)[/tex]

4. Write the resulting polynomial:
[tex]\[ -4b^3 + 7b - 7 \][/tex]

Therefore, the expanded polynomial in standard form is:
[tex]\[ -4b^3 + 7b - 7 \][/tex]