Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the coordinates of point D that form a parallelogram along with points A(-2, 4), B(1, 3), and C(4, -1), we can use the property of parallelograms that the midpoints of the diagonals are the same. Here's a step-by-step solution:
1. Identify the Midpoints of the Diagonals:
- The diagonals of a parallelogram bisect each other. Therefore, the midpoint of diagonal AC should be the same as the midpoint of diagonal BD.
2. Calculate the Midpoint of Diagonal AC:
- Point A has coordinates (-2, 4).
- Point C has coordinates (4, -1).
The midpoint formula for points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Applying the midpoint formula to points A and C:
[tex]\[ \text{Midpoint of AC} = \left( \frac{-2 + 4}{2}, \frac{4 + (-1)}{2} \right) = \left( \frac{2}{2}, \frac{3}{2} \right) = (1, 1.5) \][/tex]
3. Setup the Midpoint Formula for Diagonal BD:
- Point B has coordinates (1, 3).
- Let point D have coordinates [tex]\((D_x, D_y)\)[/tex].
Using the midpoint formula for points B and D:
[tex]\[ \text{Midpoint of BD} = \left( \frac{1 + D_x}{2}, \frac{3 + D_y}{2} \right) \][/tex]
4. Equate the Midpoints of AC and BD:
Since the midpoint of AC must be the same as the midpoint of BD:
[tex]\[ \left( \frac{1 + D_x}{2}, \frac{3 + D_y}{2} \right) = (1, 1.5) \][/tex]
5. Solve for [tex]\(D_x\)[/tex] and [tex]\(D_y\)[/tex]:
- For the x-coordinate:
[tex]\[ \frac{1 + D_x}{2} = 1 \implies 1 + D_x = 2 \implies D_x = 1 \][/tex]
- For the y-coordinate:
[tex]\[ \frac{3 + D_y}{2} = 1.5 \implies 3 + D_y = 3 \implies D_y = 0 \][/tex]
Thus, the coordinates of point D are [tex]\( (1, 0) \)[/tex].
Therefore, the correct answer is:
O D. (1, 0)
1. Identify the Midpoints of the Diagonals:
- The diagonals of a parallelogram bisect each other. Therefore, the midpoint of diagonal AC should be the same as the midpoint of diagonal BD.
2. Calculate the Midpoint of Diagonal AC:
- Point A has coordinates (-2, 4).
- Point C has coordinates (4, -1).
The midpoint formula for points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \][/tex]
Applying the midpoint formula to points A and C:
[tex]\[ \text{Midpoint of AC} = \left( \frac{-2 + 4}{2}, \frac{4 + (-1)}{2} \right) = \left( \frac{2}{2}, \frac{3}{2} \right) = (1, 1.5) \][/tex]
3. Setup the Midpoint Formula for Diagonal BD:
- Point B has coordinates (1, 3).
- Let point D have coordinates [tex]\((D_x, D_y)\)[/tex].
Using the midpoint formula for points B and D:
[tex]\[ \text{Midpoint of BD} = \left( \frac{1 + D_x}{2}, \frac{3 + D_y}{2} \right) \][/tex]
4. Equate the Midpoints of AC and BD:
Since the midpoint of AC must be the same as the midpoint of BD:
[tex]\[ \left( \frac{1 + D_x}{2}, \frac{3 + D_y}{2} \right) = (1, 1.5) \][/tex]
5. Solve for [tex]\(D_x\)[/tex] and [tex]\(D_y\)[/tex]:
- For the x-coordinate:
[tex]\[ \frac{1 + D_x}{2} = 1 \implies 1 + D_x = 2 \implies D_x = 1 \][/tex]
- For the y-coordinate:
[tex]\[ \frac{3 + D_y}{2} = 1.5 \implies 3 + D_y = 3 \implies D_y = 0 \][/tex]
Thus, the coordinates of point D are [tex]\( (1, 0) \)[/tex].
Therefore, the correct answer is:
O D. (1, 0)
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.