At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To answer this question, let's analyze the provided functions based on their degrees and leading coefficients. We'll match each function to its correct description:
1. [tex]\( f(x)=(-x+1)^3(x+2)^2(x-3) \)[/tex]
- Degree: 6
- Leading Coefficient: -1
2. [tex]\( f(x)=(-2 x+1)^2(x-3)^2(x+1) \)[/tex]
- Degree: 5
- Leading Coefficient: 4
3. [tex]\( f(x)=(x+6)(2 x-3)(x-1)^2 \)[/tex]
- Degree: 4
- Leading Coefficient: 2
4. [tex]\( f(x)=(x-2)^2(-2 x-1)^2(-x+1) \)[/tex]
- Degree: 5
- Leading Coefficient: -4
Now, let's match these functions to the given descriptions.
1. Degree: 4, leading coefficient: positive
The function [tex]\( f(x)=(x+6)(2 x-3)(x-1)^2 \)[/tex] fits this description.
- Degree: 4
- Leading Coefficient: 2 (positive)
2. Degree: 5, leading coefficient: negative
The function [tex]\( f(x)=(x-2)^2(-2 x-1)^2(-x+1) \)[/tex] fits this description.
- Degree: 5
- Leading Coefficient: -4 (negative)
3. Degree: 6, leading coefficient: negative
The function [tex]\( f(x)=(-x+1)^3(x+2)^2(x-3) \)[/tex] fits this description.
- Degree: 6
- Leading Coefficient: -1 (negative)
4. Degree: 5, leading coefficient: positive
The function [tex]\( f(x)=(-2 x+1)^2(x-3)^2(x+1) \)[/tex] fits this description.
- Degree: 5
- Leading Coefficient: 4 (positive)
Thus, we have the following matches:
1. [tex]\( f(x)=(x+6)(2 x-3)(x-1)^2 \)[/tex]: Degree: 4, leading coefficient: positive
2. [tex]\( f(x)=(x-2)^2(-2 x-1)^2(-x+1) \)[/tex]: Degree: 5, leading coefficient: negative
3. [tex]\( f(x)=(-x+1)^3(x+2)^2(x-3) \)[/tex]: Degree: 6, leading coefficient: negative
4. [tex]\( f(x)=(-2 x+1)^2(x-3)^2(x+1) \)[/tex]: Degree: 5, leading coefficient: positive
1. [tex]\( f(x)=(-x+1)^3(x+2)^2(x-3) \)[/tex]
- Degree: 6
- Leading Coefficient: -1
2. [tex]\( f(x)=(-2 x+1)^2(x-3)^2(x+1) \)[/tex]
- Degree: 5
- Leading Coefficient: 4
3. [tex]\( f(x)=(x+6)(2 x-3)(x-1)^2 \)[/tex]
- Degree: 4
- Leading Coefficient: 2
4. [tex]\( f(x)=(x-2)^2(-2 x-1)^2(-x+1) \)[/tex]
- Degree: 5
- Leading Coefficient: -4
Now, let's match these functions to the given descriptions.
1. Degree: 4, leading coefficient: positive
The function [tex]\( f(x)=(x+6)(2 x-3)(x-1)^2 \)[/tex] fits this description.
- Degree: 4
- Leading Coefficient: 2 (positive)
2. Degree: 5, leading coefficient: negative
The function [tex]\( f(x)=(x-2)^2(-2 x-1)^2(-x+1) \)[/tex] fits this description.
- Degree: 5
- Leading Coefficient: -4 (negative)
3. Degree: 6, leading coefficient: negative
The function [tex]\( f(x)=(-x+1)^3(x+2)^2(x-3) \)[/tex] fits this description.
- Degree: 6
- Leading Coefficient: -1 (negative)
4. Degree: 5, leading coefficient: positive
The function [tex]\( f(x)=(-2 x+1)^2(x-3)^2(x+1) \)[/tex] fits this description.
- Degree: 5
- Leading Coefficient: 4 (positive)
Thus, we have the following matches:
1. [tex]\( f(x)=(x+6)(2 x-3)(x-1)^2 \)[/tex]: Degree: 4, leading coefficient: positive
2. [tex]\( f(x)=(x-2)^2(-2 x-1)^2(-x+1) \)[/tex]: Degree: 5, leading coefficient: negative
3. [tex]\( f(x)=(-x+1)^3(x+2)^2(x-3) \)[/tex]: Degree: 6, leading coefficient: negative
4. [tex]\( f(x)=(-2 x+1)^2(x-3)^2(x+1) \)[/tex]: Degree: 5, leading coefficient: positive
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.