Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Given the conditional statement [tex][tex]$\sim p \rightarrow q$[/tex][/tex], which statement is logically equivalent?

A. [tex][tex]$p \rightarrow \sim q$[/tex][/tex]
B. [tex][tex]$\sim p \rightarrow \sim q$[/tex][/tex]
C. [tex][tex]$\sim q \rightarrow \sim p$[/tex][/tex]
D. [tex][tex]$\sim q \rightarrow p$[/tex][/tex]


Sagot :

To determine which statement is logically equivalent to the conditional statement [tex]\(\sim p \rightarrow q\)[/tex], let's analyze the statements given.

### Step 1: Rewrite the Given Statement

The conditional statement [tex]\(\sim p \rightarrow q\)[/tex] can be written using its equivalence in logical terms.
- [tex]\(\sim p \rightarrow q\)[/tex] is logically equivalent to [tex]\(p \lor q\)[/tex]. This follows from the fact that the implication [tex]\(\sim p \rightarrow q\)[/tex] is false only when [tex]\(\sim p\)[/tex] is true and [tex]\(q\)[/tex] is false, making the logical disjunction [tex]\(p \lor q\)[/tex] equivalent.

### Step 2: Analyze the Given Statements

Now we will analyze each of the given answer choices to see which one is logically equivalent to [tex]\(p \lor q\)[/tex]:

1. [tex]\(p \rightarrow \sim q\)[/tex]
- The statement [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\sim p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].

2. [tex]\(\sim p \rightarrow \sim q\)[/tex]
- The statement [tex]\(\sim p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].

3. [tex]\(\sim q \rightarrow \sim p\)[/tex]
- The statement [tex]\(\sim q \rightarrow \sim p\)[/tex] is equivalent to [tex]\(q \lor \sim p\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].

4. [tex]\(\sim q \rightarrow p\)[/tex]
- The statement [tex]\(\sim q \rightarrow p\)[/tex] is equivalent to [tex]\(q \lor p\)[/tex].
- Notice that [tex]\(q \lor p\)[/tex] is the same as [tex]\(p \lor q\)[/tex], as the disjunction operator is commutative.

### Step 3: Conclusion

Given this analysis, the statement that is logically equivalent to [tex]\(\sim p \rightarrow q\)[/tex] is [tex]\(\sim q \rightarrow p\)[/tex].

So, the correct choice is:

[tex]\[ \boxed{4} \][/tex]