Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine which statement is logically equivalent to the conditional statement [tex]\(\sim p \rightarrow q\)[/tex], let's analyze the statements given.
### Step 1: Rewrite the Given Statement
The conditional statement [tex]\(\sim p \rightarrow q\)[/tex] can be written using its equivalence in logical terms.
- [tex]\(\sim p \rightarrow q\)[/tex] is logically equivalent to [tex]\(p \lor q\)[/tex]. This follows from the fact that the implication [tex]\(\sim p \rightarrow q\)[/tex] is false only when [tex]\(\sim p\)[/tex] is true and [tex]\(q\)[/tex] is false, making the logical disjunction [tex]\(p \lor q\)[/tex] equivalent.
### Step 2: Analyze the Given Statements
Now we will analyze each of the given answer choices to see which one is logically equivalent to [tex]\(p \lor q\)[/tex]:
1. [tex]\(p \rightarrow \sim q\)[/tex]
- The statement [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\sim p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
2. [tex]\(\sim p \rightarrow \sim q\)[/tex]
- The statement [tex]\(\sim p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
3. [tex]\(\sim q \rightarrow \sim p\)[/tex]
- The statement [tex]\(\sim q \rightarrow \sim p\)[/tex] is equivalent to [tex]\(q \lor \sim p\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
4. [tex]\(\sim q \rightarrow p\)[/tex]
- The statement [tex]\(\sim q \rightarrow p\)[/tex] is equivalent to [tex]\(q \lor p\)[/tex].
- Notice that [tex]\(q \lor p\)[/tex] is the same as [tex]\(p \lor q\)[/tex], as the disjunction operator is commutative.
### Step 3: Conclusion
Given this analysis, the statement that is logically equivalent to [tex]\(\sim p \rightarrow q\)[/tex] is [tex]\(\sim q \rightarrow p\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
### Step 1: Rewrite the Given Statement
The conditional statement [tex]\(\sim p \rightarrow q\)[/tex] can be written using its equivalence in logical terms.
- [tex]\(\sim p \rightarrow q\)[/tex] is logically equivalent to [tex]\(p \lor q\)[/tex]. This follows from the fact that the implication [tex]\(\sim p \rightarrow q\)[/tex] is false only when [tex]\(\sim p\)[/tex] is true and [tex]\(q\)[/tex] is false, making the logical disjunction [tex]\(p \lor q\)[/tex] equivalent.
### Step 2: Analyze the Given Statements
Now we will analyze each of the given answer choices to see which one is logically equivalent to [tex]\(p \lor q\)[/tex]:
1. [tex]\(p \rightarrow \sim q\)[/tex]
- The statement [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\sim p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
2. [tex]\(\sim p \rightarrow \sim q\)[/tex]
- The statement [tex]\(\sim p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
3. [tex]\(\sim q \rightarrow \sim p\)[/tex]
- The statement [tex]\(\sim q \rightarrow \sim p\)[/tex] is equivalent to [tex]\(q \lor \sim p\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
4. [tex]\(\sim q \rightarrow p\)[/tex]
- The statement [tex]\(\sim q \rightarrow p\)[/tex] is equivalent to [tex]\(q \lor p\)[/tex].
- Notice that [tex]\(q \lor p\)[/tex] is the same as [tex]\(p \lor q\)[/tex], as the disjunction operator is commutative.
### Step 3: Conclusion
Given this analysis, the statement that is logically equivalent to [tex]\(\sim p \rightarrow q\)[/tex] is [tex]\(\sim q \rightarrow p\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.