Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which statement is logically equivalent to the conditional statement [tex]\(\sim p \rightarrow q\)[/tex], let's analyze the statements given.
### Step 1: Rewrite the Given Statement
The conditional statement [tex]\(\sim p \rightarrow q\)[/tex] can be written using its equivalence in logical terms.
- [tex]\(\sim p \rightarrow q\)[/tex] is logically equivalent to [tex]\(p \lor q\)[/tex]. This follows from the fact that the implication [tex]\(\sim p \rightarrow q\)[/tex] is false only when [tex]\(\sim p\)[/tex] is true and [tex]\(q\)[/tex] is false, making the logical disjunction [tex]\(p \lor q\)[/tex] equivalent.
### Step 2: Analyze the Given Statements
Now we will analyze each of the given answer choices to see which one is logically equivalent to [tex]\(p \lor q\)[/tex]:
1. [tex]\(p \rightarrow \sim q\)[/tex]
- The statement [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\sim p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
2. [tex]\(\sim p \rightarrow \sim q\)[/tex]
- The statement [tex]\(\sim p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
3. [tex]\(\sim q \rightarrow \sim p\)[/tex]
- The statement [tex]\(\sim q \rightarrow \sim p\)[/tex] is equivalent to [tex]\(q \lor \sim p\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
4. [tex]\(\sim q \rightarrow p\)[/tex]
- The statement [tex]\(\sim q \rightarrow p\)[/tex] is equivalent to [tex]\(q \lor p\)[/tex].
- Notice that [tex]\(q \lor p\)[/tex] is the same as [tex]\(p \lor q\)[/tex], as the disjunction operator is commutative.
### Step 3: Conclusion
Given this analysis, the statement that is logically equivalent to [tex]\(\sim p \rightarrow q\)[/tex] is [tex]\(\sim q \rightarrow p\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
### Step 1: Rewrite the Given Statement
The conditional statement [tex]\(\sim p \rightarrow q\)[/tex] can be written using its equivalence in logical terms.
- [tex]\(\sim p \rightarrow q\)[/tex] is logically equivalent to [tex]\(p \lor q\)[/tex]. This follows from the fact that the implication [tex]\(\sim p \rightarrow q\)[/tex] is false only when [tex]\(\sim p\)[/tex] is true and [tex]\(q\)[/tex] is false, making the logical disjunction [tex]\(p \lor q\)[/tex] equivalent.
### Step 2: Analyze the Given Statements
Now we will analyze each of the given answer choices to see which one is logically equivalent to [tex]\(p \lor q\)[/tex]:
1. [tex]\(p \rightarrow \sim q\)[/tex]
- The statement [tex]\(p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(\sim p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
2. [tex]\(\sim p \rightarrow \sim q\)[/tex]
- The statement [tex]\(\sim p \rightarrow \sim q\)[/tex] is equivalent to [tex]\(p \lor \sim q\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
3. [tex]\(\sim q \rightarrow \sim p\)[/tex]
- The statement [tex]\(\sim q \rightarrow \sim p\)[/tex] is equivalent to [tex]\(q \lor \sim p\)[/tex].
- This is not equivalent to [tex]\(p \lor q\)[/tex].
4. [tex]\(\sim q \rightarrow p\)[/tex]
- The statement [tex]\(\sim q \rightarrow p\)[/tex] is equivalent to [tex]\(q \lor p\)[/tex].
- Notice that [tex]\(q \lor p\)[/tex] is the same as [tex]\(p \lor q\)[/tex], as the disjunction operator is commutative.
### Step 3: Conclusion
Given this analysis, the statement that is logically equivalent to [tex]\(\sim p \rightarrow q\)[/tex] is [tex]\(\sim q \rightarrow p\)[/tex].
So, the correct choice is:
[tex]\[ \boxed{4} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.