Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our Q&A platform and connect with professionals ready to provide precise answers to your questions in various areas. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Sure, let's carefully analyze each statement given the original premise "If a number is negative, the additive inverse is positive."
1. Original Statement:
- The original statement is "If a number is negative, the additive inverse is positive."
- Let's denote "a number is negative" by [tex]\( p \)[/tex] and "the additive inverse is positive" by [tex]\( q \)[/tex].
- Therefore, the original statement in logical notation is [tex]\( p \rightarrow q \)[/tex].
- This is indeed correct.
- Statement: If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the original statement is [tex]\( p \rightarrow q \)[/tex].
- Evaluation: True
2. Inverse Statement:
- The inverse of the original statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( \neg p \rightarrow \neg q \)[/tex].
- In words, this means "If a number is not negative, the additive inverse is not positive."
- Statement: If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the inverse of the original statement is [tex]\( \neg p \rightarrow \neg q \)[/tex].
- Evaluation: True
3. Converse Statement:
- The converse of the original statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( q \rightarrow p \)[/tex].
- In words, this means "If the additive inverse is positive, then the number is negative."
- Statement: If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the converse of the original statement is [tex]\( q \rightarrow p \)[/tex].
- Evaluation: True
4. Contrapositive Statement:
- The contrapositive of the original statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( \neg q \rightarrow \neg p \)[/tex].
- In words, this means "If the additive inverse is not positive, the number is not negative."
- According to the statement provided, [tex]\( q \)[/tex] is redefined as "a number is negative" and [tex]\( p \)[/tex] as "the additive inverse is positive".
- This means the contrapositive should be formulated in terms of "If the additive inverse is not positive, then the number is not negative."
- Statement: If [tex]\( q = \)[/tex] "a number is negative" and [tex]\( p = \)[/tex] "the additive inverse is positive," the contrapositive of the original statement is [tex]\( \neg p \rightarrow \neg q \)[/tex].
- Evaluation: False
5. Wrong Converse Statement:
- The converse of the statement given is incorrectly framed: "If [tex]\( q = \)[/tex] 'a number is negative' and [tex]\( p = \)[/tex] 'the additive inverse is positive,' the converse of the original statement is [tex]\( q \rightarrow p \)[/tex]."
- However, [tex]\( q \rightarrow p \)[/tex] is correct for converse, but as per the question's presentation, this framing may have an error in syntax.
- Statement: If [tex]\( q = \)[/tex] "a number is negative" and [tex]\( p = \)[/tex] "the additive inverse is positive," the converse of the original statement is [tex]\( q \rightarrow p \)[/tex].
- Evaluation: False due to syntax or misrepresentation problems.
Thus, the true statements are:
1. If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the original statement is [tex]\( p \rightarrow q \)[/tex].
2. If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the inverse of the original statement is [tex]\( \neg p \rightarrow \neg q \)[/tex].
3. If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the converse of the original statement is [tex]\( q \rightarrow p \)[/tex].
True Indices: [1, 2, 3]
1. Original Statement:
- The original statement is "If a number is negative, the additive inverse is positive."
- Let's denote "a number is negative" by [tex]\( p \)[/tex] and "the additive inverse is positive" by [tex]\( q \)[/tex].
- Therefore, the original statement in logical notation is [tex]\( p \rightarrow q \)[/tex].
- This is indeed correct.
- Statement: If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the original statement is [tex]\( p \rightarrow q \)[/tex].
- Evaluation: True
2. Inverse Statement:
- The inverse of the original statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( \neg p \rightarrow \neg q \)[/tex].
- In words, this means "If a number is not negative, the additive inverse is not positive."
- Statement: If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the inverse of the original statement is [tex]\( \neg p \rightarrow \neg q \)[/tex].
- Evaluation: True
3. Converse Statement:
- The converse of the original statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( q \rightarrow p \)[/tex].
- In words, this means "If the additive inverse is positive, then the number is negative."
- Statement: If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the converse of the original statement is [tex]\( q \rightarrow p \)[/tex].
- Evaluation: True
4. Contrapositive Statement:
- The contrapositive of the original statement [tex]\( p \rightarrow q \)[/tex] is [tex]\( \neg q \rightarrow \neg p \)[/tex].
- In words, this means "If the additive inverse is not positive, the number is not negative."
- According to the statement provided, [tex]\( q \)[/tex] is redefined as "a number is negative" and [tex]\( p \)[/tex] as "the additive inverse is positive".
- This means the contrapositive should be formulated in terms of "If the additive inverse is not positive, then the number is not negative."
- Statement: If [tex]\( q = \)[/tex] "a number is negative" and [tex]\( p = \)[/tex] "the additive inverse is positive," the contrapositive of the original statement is [tex]\( \neg p \rightarrow \neg q \)[/tex].
- Evaluation: False
5. Wrong Converse Statement:
- The converse of the statement given is incorrectly framed: "If [tex]\( q = \)[/tex] 'a number is negative' and [tex]\( p = \)[/tex] 'the additive inverse is positive,' the converse of the original statement is [tex]\( q \rightarrow p \)[/tex]."
- However, [tex]\( q \rightarrow p \)[/tex] is correct for converse, but as per the question's presentation, this framing may have an error in syntax.
- Statement: If [tex]\( q = \)[/tex] "a number is negative" and [tex]\( p = \)[/tex] "the additive inverse is positive," the converse of the original statement is [tex]\( q \rightarrow p \)[/tex].
- Evaluation: False due to syntax or misrepresentation problems.
Thus, the true statements are:
1. If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the original statement is [tex]\( p \rightarrow q \)[/tex].
2. If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the inverse of the original statement is [tex]\( \neg p \rightarrow \neg q \)[/tex].
3. If [tex]\( p = \)[/tex] "a number is negative" and [tex]\( q = \)[/tex] "the additive inverse is positive," the converse of the original statement is [tex]\( q \rightarrow p \)[/tex].
True Indices: [1, 2, 3]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.