Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the angular speed [tex]\(\omega\)[/tex] in radians per second, given that the central angle [tex]\(\theta\)[/tex] is 288 degrees and the time [tex]\(t\)[/tex] is 4 seconds, follow these steps:
1. Convert the central angle from degrees to radians:
- The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]
- Plugging in the value [tex]\(\theta = 288^{\circ}\)[/tex] into this formula, we get:
[tex]\[ \theta_{\text{radians}} = 288^{\circ} \times \left(\frac{\pi}{180}\right) = 288 \times \frac{\pi}{180} = 1.6\pi \][/tex]
- After computing the numerical value, we have:
[tex]\[ \theta_{\text{radians}} \approx 5.026548245743669 \][/tex]
2. Calculate the angular speed [tex]\(\omega\)[/tex]:
- The formula to find angular speed is:
[tex]\[ \omega = \frac{\theta}{t} \][/tex]
- Using [tex]\(\theta = 5.026548245743669 \text{ radians}\)[/tex] and [tex]\(t = 4 \text{ seconds}\)[/tex], we get:
[tex]\[ \omega = \frac{5.026548245743669}{4} = 1.2566370614359172 \text{ radians/second} \][/tex]
Thus, the angular speed [tex]\(\omega\)[/tex] is [tex]\(\boxed{1.2566370614359172}\)[/tex] radians/second.
1. Convert the central angle from degrees to radians:
- The formula to convert degrees to radians is:
[tex]\[ \text{radians} = \text{degrees} \times \left(\frac{\pi}{180}\right) \][/tex]
- Plugging in the value [tex]\(\theta = 288^{\circ}\)[/tex] into this formula, we get:
[tex]\[ \theta_{\text{radians}} = 288^{\circ} \times \left(\frac{\pi}{180}\right) = 288 \times \frac{\pi}{180} = 1.6\pi \][/tex]
- After computing the numerical value, we have:
[tex]\[ \theta_{\text{radians}} \approx 5.026548245743669 \][/tex]
2. Calculate the angular speed [tex]\(\omega\)[/tex]:
- The formula to find angular speed is:
[tex]\[ \omega = \frac{\theta}{t} \][/tex]
- Using [tex]\(\theta = 5.026548245743669 \text{ radians}\)[/tex] and [tex]\(t = 4 \text{ seconds}\)[/tex], we get:
[tex]\[ \omega = \frac{5.026548245743669}{4} = 1.2566370614359172 \text{ radians/second} \][/tex]
Thus, the angular speed [tex]\(\omega\)[/tex] is [tex]\(\boxed{1.2566370614359172}\)[/tex] radians/second.
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.