Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the slope and length of the dilated line segment [tex]\(\overline{A'B'}\)[/tex] when [tex]\(\overline{A B}\)[/tex] is dilated by a scale factor of 3.5 with the origin as the center of dilation, we can follow these detailed steps.
### Step 1: Find the Slope [tex]\((m)\)[/tex] of [tex]\(\overline{A B}\)[/tex]
The slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the endpoints [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the slope:
[tex]\[ m = \frac{8 - 2}{3 - 2} = \frac{6}{1} = 6 \][/tex]
So, the slope [tex]\(m\)[/tex] is [tex]\(6\)[/tex].
### Step 2: Find the Length of [tex]\(\overline{A B}\)[/tex]
The length [tex]\(d\)[/tex] of a line segment between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using the given points [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the length:
[tex]\[ d = \sqrt{(3 - 2)^2 + (8 - 2)^2} = \sqrt{1^2 + 6^2} = \sqrt{1 + 36} = \sqrt{37} \][/tex]
So, the length of [tex]\(\overline{A B}\)[/tex] is [tex]\(\sqrt{37}\)[/tex].
### Step 3: Calculate the Length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex]
Given that [tex]\(\overline{A B}\)[/tex] is dilated by a scale factor of 3.5, the length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex] will be:
[tex]\[ \text{length of } \overline{A^{\prime} B^{\prime}} = 3.5 \times \sqrt{37} \][/tex]
### Summarize Results
- The slope [tex]\(m\)[/tex] remains the same after dilation, so [tex]\(m = 6\)[/tex].
- The length of [tex]\(\overline{A'B'}\)[/tex] is [tex]\(3.5 \sqrt{37}\)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{D. \, m=6, \, A^{\prime} B^{\prime}=3.5 \sqrt{37}} \][/tex]
### Step 1: Find the Slope [tex]\((m)\)[/tex] of [tex]\(\overline{A B}\)[/tex]
The slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the endpoints [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the slope:
[tex]\[ m = \frac{8 - 2}{3 - 2} = \frac{6}{1} = 6 \][/tex]
So, the slope [tex]\(m\)[/tex] is [tex]\(6\)[/tex].
### Step 2: Find the Length of [tex]\(\overline{A B}\)[/tex]
The length [tex]\(d\)[/tex] of a line segment between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using the given points [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the length:
[tex]\[ d = \sqrt{(3 - 2)^2 + (8 - 2)^2} = \sqrt{1^2 + 6^2} = \sqrt{1 + 36} = \sqrt{37} \][/tex]
So, the length of [tex]\(\overline{A B}\)[/tex] is [tex]\(\sqrt{37}\)[/tex].
### Step 3: Calculate the Length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex]
Given that [tex]\(\overline{A B}\)[/tex] is dilated by a scale factor of 3.5, the length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex] will be:
[tex]\[ \text{length of } \overline{A^{\prime} B^{\prime}} = 3.5 \times \sqrt{37} \][/tex]
### Summarize Results
- The slope [tex]\(m\)[/tex] remains the same after dilation, so [tex]\(m = 6\)[/tex].
- The length of [tex]\(\overline{A'B'}\)[/tex] is [tex]\(3.5 \sqrt{37}\)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{D. \, m=6, \, A^{\prime} B^{\prime}=3.5 \sqrt{37}} \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.