At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To find the slope and length of the dilated line segment [tex]\(\overline{A'B'}\)[/tex] when [tex]\(\overline{A B}\)[/tex] is dilated by a scale factor of 3.5 with the origin as the center of dilation, we can follow these detailed steps.
### Step 1: Find the Slope [tex]\((m)\)[/tex] of [tex]\(\overline{A B}\)[/tex]
The slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the endpoints [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the slope:
[tex]\[ m = \frac{8 - 2}{3 - 2} = \frac{6}{1} = 6 \][/tex]
So, the slope [tex]\(m\)[/tex] is [tex]\(6\)[/tex].
### Step 2: Find the Length of [tex]\(\overline{A B}\)[/tex]
The length [tex]\(d\)[/tex] of a line segment between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using the given points [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the length:
[tex]\[ d = \sqrt{(3 - 2)^2 + (8 - 2)^2} = \sqrt{1^2 + 6^2} = \sqrt{1 + 36} = \sqrt{37} \][/tex]
So, the length of [tex]\(\overline{A B}\)[/tex] is [tex]\(\sqrt{37}\)[/tex].
### Step 3: Calculate the Length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex]
Given that [tex]\(\overline{A B}\)[/tex] is dilated by a scale factor of 3.5, the length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex] will be:
[tex]\[ \text{length of } \overline{A^{\prime} B^{\prime}} = 3.5 \times \sqrt{37} \][/tex]
### Summarize Results
- The slope [tex]\(m\)[/tex] remains the same after dilation, so [tex]\(m = 6\)[/tex].
- The length of [tex]\(\overline{A'B'}\)[/tex] is [tex]\(3.5 \sqrt{37}\)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{D. \, m=6, \, A^{\prime} B^{\prime}=3.5 \sqrt{37}} \][/tex]
### Step 1: Find the Slope [tex]\((m)\)[/tex] of [tex]\(\overline{A B}\)[/tex]
The slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is calculated using the formula:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the endpoints [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the slope:
[tex]\[ m = \frac{8 - 2}{3 - 2} = \frac{6}{1} = 6 \][/tex]
So, the slope [tex]\(m\)[/tex] is [tex]\(6\)[/tex].
### Step 2: Find the Length of [tex]\(\overline{A B}\)[/tex]
The length [tex]\(d\)[/tex] of a line segment between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]
Using the given points [tex]\(A(2, 2)\)[/tex] and [tex]\(B(3, 8)\)[/tex], we can find the length:
[tex]\[ d = \sqrt{(3 - 2)^2 + (8 - 2)^2} = \sqrt{1^2 + 6^2} = \sqrt{1 + 36} = \sqrt{37} \][/tex]
So, the length of [tex]\(\overline{A B}\)[/tex] is [tex]\(\sqrt{37}\)[/tex].
### Step 3: Calculate the Length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex]
Given that [tex]\(\overline{A B}\)[/tex] is dilated by a scale factor of 3.5, the length of [tex]\(\overline{A^{\prime} B^{\prime}}\)[/tex] will be:
[tex]\[ \text{length of } \overline{A^{\prime} B^{\prime}} = 3.5 \times \sqrt{37} \][/tex]
### Summarize Results
- The slope [tex]\(m\)[/tex] remains the same after dilation, so [tex]\(m = 6\)[/tex].
- The length of [tex]\(\overline{A'B'}\)[/tex] is [tex]\(3.5 \sqrt{37}\)[/tex].
Thus, the correct choice is:
[tex]\[ \boxed{D. \, m=6, \, A^{\prime} B^{\prime}=3.5 \sqrt{37}} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.