At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's break down the problem and clarify each logical expression based on the given statement and the defined terms:
1. Original Conditional ( [tex]\(p \rightarrow q\)[/tex] ):
- Statement: If [tex]\(p\)[/tex] represents doubling the dimensions of a rectangle and [tex]\(q\)[/tex] represents the area increasing by a factor of 4, then [tex]\(p \rightarrow q\)[/tex] is stated as "If the dimensions of a rectangle are doubled, then the area increases by a factor of 4."
- Truth Value: True
2. Inverse ( [tex]\(-p \rightarrow -q\)[/tex] ):
- Statement: If [tex]\(-p\)[/tex] represents not doubling the dimensions of a rectangle and [tex]\(-q\)[/tex] represents the area not increasing by a factor of 4, then [tex]\(-p \rightarrow -q\)[/tex] is stated as "If the dimensions of a rectangle are not doubled, then the area does not increase by a factor of 4."
- Truth Value: False
3. Converse ( [tex]\(q \rightarrow p\)[/tex] ):
- Statement: If [tex]\(q\)[/tex] represents the area increasing by a factor of 4 and [tex]\(p\)[/tex] represents doubling the dimensions of a rectangle, then [tex]\(q \rightarrow p\)[/tex] is stated as "If the area increases by a factor of 4, then the dimensions of the rectangle are doubled."
- Truth Value: True
4. Contrapositive ( [tex]\(-q \rightarrow -p\)[/tex] ):
- Statement: If [tex]\(-q\)[/tex] represents the area not increasing by a factor of 4 and [tex]\(-p\)[/tex] represents not doubling the dimensions of a rectangle, then [tex]\(-q \rightarrow -p\)[/tex] is stated as "If the area does not increase by a factor of 4, then the dimensions of the rectangle are not doubled."
- Truth Value: False
Based on these logical evaluations, the two true statements are:
1. [tex]\(p \rightarrow q\)[/tex] ("If the dimensions of a rectangle are doubled, then the area increases by a factor of 4.") is true.
2. [tex]\(q \rightarrow p\)[/tex] ("If the area increases by a factor of 4, then the dimensions of the rectangle are doubled.") is true.
Thus, the two options that are true are:
- [tex]\(p \rightarrow q\)[/tex]
- [tex]\(q \rightarrow p\)[/tex]
1. Original Conditional ( [tex]\(p \rightarrow q\)[/tex] ):
- Statement: If [tex]\(p\)[/tex] represents doubling the dimensions of a rectangle and [tex]\(q\)[/tex] represents the area increasing by a factor of 4, then [tex]\(p \rightarrow q\)[/tex] is stated as "If the dimensions of a rectangle are doubled, then the area increases by a factor of 4."
- Truth Value: True
2. Inverse ( [tex]\(-p \rightarrow -q\)[/tex] ):
- Statement: If [tex]\(-p\)[/tex] represents not doubling the dimensions of a rectangle and [tex]\(-q\)[/tex] represents the area not increasing by a factor of 4, then [tex]\(-p \rightarrow -q\)[/tex] is stated as "If the dimensions of a rectangle are not doubled, then the area does not increase by a factor of 4."
- Truth Value: False
3. Converse ( [tex]\(q \rightarrow p\)[/tex] ):
- Statement: If [tex]\(q\)[/tex] represents the area increasing by a factor of 4 and [tex]\(p\)[/tex] represents doubling the dimensions of a rectangle, then [tex]\(q \rightarrow p\)[/tex] is stated as "If the area increases by a factor of 4, then the dimensions of the rectangle are doubled."
- Truth Value: True
4. Contrapositive ( [tex]\(-q \rightarrow -p\)[/tex] ):
- Statement: If [tex]\(-q\)[/tex] represents the area not increasing by a factor of 4 and [tex]\(-p\)[/tex] represents not doubling the dimensions of a rectangle, then [tex]\(-q \rightarrow -p\)[/tex] is stated as "If the area does not increase by a factor of 4, then the dimensions of the rectangle are not doubled."
- Truth Value: False
Based on these logical evaluations, the two true statements are:
1. [tex]\(p \rightarrow q\)[/tex] ("If the dimensions of a rectangle are doubled, then the area increases by a factor of 4.") is true.
2. [tex]\(q \rightarrow p\)[/tex] ("If the area increases by a factor of 4, then the dimensions of the rectangle are doubled.") is true.
Thus, the two options that are true are:
- [tex]\(p \rightarrow q\)[/tex]
- [tex]\(q \rightarrow p\)[/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.