Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To find the equation of the parabola with the given focus and directrix, we first recognize that this is a case of a horizontal parabola.
### Given:
- Focus: [tex]\((0, 3)\)[/tex]
- Directrix: [tex]\(x = -2\)[/tex]
### Step-by-Step Solution:
1. Identify the Coordinates [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
The vertex form of a horizontal parabola is [tex]\((y - k)^2 = 4a(x - h)\)[/tex].
- Here, the focus [tex]\( (h + a, k) \)[/tex] is [tex]\((0 + a, 3)\)[/tex] which simplifies to [tex]\((a, 3)\)[/tex].
- The vertex [tex]\((h, k)\)[/tex] is [tex]\((0, 3)\)[/tex].
2. Determine [tex]\( a \)[/tex] Using Directrix:
The directrix equation for a horizontal parabola is [tex]\(x = h - a\)[/tex].
- Given directrix is [tex]\(x = -2\)[/tex].
- Plugging in the vertex [tex]\(h = 0\)[/tex]: [tex]\(0 - a = -2\)[/tex] which simplifies to [tex]\(a = 2\)[/tex].
3. Verify:
Since the focus is [tex]\((0 + 2, 3)\)[/tex] and [tex]\( a = 2 \)[/tex], indeed, the directrix [tex]\(x = 0 - 2 = -2\)[/tex] is correct. However, since we chose a towards left direction from vertex, [tex]\( a \)[/tex] turns out to be [tex]\(-2\)[/tex].
4. Formulate the Standard Equation of the Parabola:
Using the standard equation [tex]\((y - k)^2 = 4a(x - h)\)[/tex]:
- Substituting [tex]\(k = 3\)[/tex], [tex]\(h = 0\)[/tex], and [tex]\(a = -2\)[/tex]:
[tex]\[ (y - 3)^2 = 4(-2)(x - 0) \][/tex]
Simplifying, we get:
[tex]\[ (y - 3)^2 = -8x \][/tex]
### Final Parabola Equation:
The equation of the parabola with focus [tex]\((0, 3)\)[/tex] and directrix [tex]\(x = -2\)[/tex] is:
[tex]\[ (y - 3)^2 = -8x \][/tex]
### Given:
- Focus: [tex]\((0, 3)\)[/tex]
- Directrix: [tex]\(x = -2\)[/tex]
### Step-by-Step Solution:
1. Identify the Coordinates [tex]\( h \)[/tex] and [tex]\( k \)[/tex]:
The vertex form of a horizontal parabola is [tex]\((y - k)^2 = 4a(x - h)\)[/tex].
- Here, the focus [tex]\( (h + a, k) \)[/tex] is [tex]\((0 + a, 3)\)[/tex] which simplifies to [tex]\((a, 3)\)[/tex].
- The vertex [tex]\((h, k)\)[/tex] is [tex]\((0, 3)\)[/tex].
2. Determine [tex]\( a \)[/tex] Using Directrix:
The directrix equation for a horizontal parabola is [tex]\(x = h - a\)[/tex].
- Given directrix is [tex]\(x = -2\)[/tex].
- Plugging in the vertex [tex]\(h = 0\)[/tex]: [tex]\(0 - a = -2\)[/tex] which simplifies to [tex]\(a = 2\)[/tex].
3. Verify:
Since the focus is [tex]\((0 + 2, 3)\)[/tex] and [tex]\( a = 2 \)[/tex], indeed, the directrix [tex]\(x = 0 - 2 = -2\)[/tex] is correct. However, since we chose a towards left direction from vertex, [tex]\( a \)[/tex] turns out to be [tex]\(-2\)[/tex].
4. Formulate the Standard Equation of the Parabola:
Using the standard equation [tex]\((y - k)^2 = 4a(x - h)\)[/tex]:
- Substituting [tex]\(k = 3\)[/tex], [tex]\(h = 0\)[/tex], and [tex]\(a = -2\)[/tex]:
[tex]\[ (y - 3)^2 = 4(-2)(x - 0) \][/tex]
Simplifying, we get:
[tex]\[ (y - 3)^2 = -8x \][/tex]
### Final Parabola Equation:
The equation of the parabola with focus [tex]\((0, 3)\)[/tex] and directrix [tex]\(x = -2\)[/tex] is:
[tex]\[ (y - 3)^2 = -8x \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.