Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To use the remainder theorem to find [tex]\( F(-1) \)[/tex] for the polynomial function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex]:
1. Substitute [tex]\( x = -1 \)[/tex] into the polynomial:
Given the function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex], we need to evaluate [tex]\( F(-1) \)[/tex].
2. Evaluate each term:
- For the term [tex]\( -x^3 \)[/tex]:
[tex]\[ -(-1)^3 = -(-1) = 1 \][/tex]
- For the term [tex]\( 6x^2 \)[/tex]:
[tex]\[ 6(-1)^2 = 6(1) = 6 \][/tex]
- For the term [tex]\( -4x \)[/tex]:
[tex]\[ -4(-1) = 4 \][/tex]
- For the constant term [tex]\( +11 \)[/tex]:
[tex]\[ 11 \][/tex]
3. Add the results of each term:
[tex]\[ F(-1) = 1 + 6 + 4 + 11 \][/tex]
4. Combine the results:
[tex]\[ F(-1) = 22 \][/tex]
Hence, the result of using the remainder theorem to find [tex]\( F(-1) \)[/tex] for the polynomial function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex] is [tex]\(\boxed{22}\)[/tex].
1. Substitute [tex]\( x = -1 \)[/tex] into the polynomial:
Given the function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex], we need to evaluate [tex]\( F(-1) \)[/tex].
2. Evaluate each term:
- For the term [tex]\( -x^3 \)[/tex]:
[tex]\[ -(-1)^3 = -(-1) = 1 \][/tex]
- For the term [tex]\( 6x^2 \)[/tex]:
[tex]\[ 6(-1)^2 = 6(1) = 6 \][/tex]
- For the term [tex]\( -4x \)[/tex]:
[tex]\[ -4(-1) = 4 \][/tex]
- For the constant term [tex]\( +11 \)[/tex]:
[tex]\[ 11 \][/tex]
3. Add the results of each term:
[tex]\[ F(-1) = 1 + 6 + 4 + 11 \][/tex]
4. Combine the results:
[tex]\[ F(-1) = 22 \][/tex]
Hence, the result of using the remainder theorem to find [tex]\( F(-1) \)[/tex] for the polynomial function [tex]\( F(x) = -x^3 + 6x^2 - 4x + 11 \)[/tex] is [tex]\(\boxed{22}\)[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.