Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's break down the problem step-by-step to identify which expression represents the converse of a given conditional statement [tex]\( p \rightarrow q \)[/tex].
1. Understanding the Conditional Statement [tex]\( p \rightarrow q \)[/tex]:
- [tex]\( p \rightarrow q \)[/tex] means "if [tex]\( p \)[/tex], then [tex]\( q \)[/tex]".
- In this context, [tex]\( p \)[/tex] is the hypothesis (or antecedent) and [tex]\( q \)[/tex] is the conclusion (or consequent).
2. Defining the Converse:
- The converse of a conditional statement [tex]\( p \rightarrow q \)[/tex] is obtained by swapping the hypothesis and the conclusion. Therefore, the converse of [tex]\( p \rightarrow q \)[/tex] is [tex]\( q \rightarrow p \)[/tex].
3. Evaluating the Options:
- [tex]\(\sim p \rightarrow -q\)[/tex]: This expression states "if not [tex]\( p \)[/tex], then not [tex]\( q \)[/tex]". This does not swap the hypothesis and conclusion; it involves negations.
- [tex]\(\sim q \rightarrow \sim p\)[/tex]: This expression states "if not [tex]\( q \)[/tex], then not [tex]\( p \)[/tex]". This still does not represent the converse of the original statement.
- [tex]\(q \rightarrow p\)[/tex]: This expression correctly states "if [tex]\( q \)[/tex], then [tex]\( p \)[/tex]", which is precisely the converse of [tex]\( p \rightarrow q \)[/tex].
- [tex]\(p \rightarrow q\)[/tex]: This is the original conditional statement, not its converse.
From this detailed analysis, we can conclude that the correct answer, which represents the converse of the conditional statement [tex]\( p \rightarrow q \)[/tex], is:
[tex]\[ q \rightarrow p \][/tex]
1. Understanding the Conditional Statement [tex]\( p \rightarrow q \)[/tex]:
- [tex]\( p \rightarrow q \)[/tex] means "if [tex]\( p \)[/tex], then [tex]\( q \)[/tex]".
- In this context, [tex]\( p \)[/tex] is the hypothesis (or antecedent) and [tex]\( q \)[/tex] is the conclusion (or consequent).
2. Defining the Converse:
- The converse of a conditional statement [tex]\( p \rightarrow q \)[/tex] is obtained by swapping the hypothesis and the conclusion. Therefore, the converse of [tex]\( p \rightarrow q \)[/tex] is [tex]\( q \rightarrow p \)[/tex].
3. Evaluating the Options:
- [tex]\(\sim p \rightarrow -q\)[/tex]: This expression states "if not [tex]\( p \)[/tex], then not [tex]\( q \)[/tex]". This does not swap the hypothesis and conclusion; it involves negations.
- [tex]\(\sim q \rightarrow \sim p\)[/tex]: This expression states "if not [tex]\( q \)[/tex], then not [tex]\( p \)[/tex]". This still does not represent the converse of the original statement.
- [tex]\(q \rightarrow p\)[/tex]: This expression correctly states "if [tex]\( q \)[/tex], then [tex]\( p \)[/tex]", which is precisely the converse of [tex]\( p \rightarrow q \)[/tex].
- [tex]\(p \rightarrow q\)[/tex]: This is the original conditional statement, not its converse.
From this detailed analysis, we can conclude that the correct answer, which represents the converse of the conditional statement [tex]\( p \rightarrow q \)[/tex], is:
[tex]\[ q \rightarrow p \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.