Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's start by defining what we know from the problem:
1. The probability of selecting an even card is given as [tex]\(\frac{2}{9}\)[/tex].
2. We need to determine the ratio of even cards to odd cards.
### Step-by-step breakdown:
#### Step 1: Define Variables
- Let [tex]\( E \)[/tex] be the number of even cards.
- Let [tex]\( O \)[/tex] be the number of odd cards.
- The total number of cards is then [tex]\( E + O \)[/tex].
#### Step 2: Set Up the Probability
The probability of picking an even card is:
[tex]\[ \text{Probability(Even)} = \frac{E}{E + O} \][/tex]
Given that this probability is [tex]\(\frac{2}{9}\)[/tex], we can set up the equation:
[tex]\[ \frac{E}{E + O} = \frac{2}{9} \][/tex]
#### Step 3: Solve for the Ratio [tex]\( \frac{E}{O} \)[/tex]
We can manipulate the equation to find the relationship between [tex]\( E \)[/tex] and [tex]\( O \)[/tex].
First, cross-multiply to clear the fraction:
[tex]\[ 9E = 2(E + O) \][/tex]
Next, distribute and solve for [tex]\( O \)[/tex]:
[tex]\[ 9E = 2E + 2O \][/tex]
[tex]\[ 9E - 2E = 2O \][/tex]
[tex]\[ 7E = 2O \][/tex]
Now, isolate [tex]\( O \)[/tex]:
[tex]\[ O = \frac{7E}{2} \][/tex]
#### Step 4: Determine the Ratio [tex]\( \frac{E}{O} \)[/tex]
From the above equation, we can express [tex]\( O \)[/tex] in terms of [tex]\( E \)[/tex]:
[tex]\[ E = E \][/tex]
[tex]\( O = \frac{7E}{2} \)[/tex]
Therefore, the ratio of even cards to odd cards [tex]\( \frac{E}{O} \)[/tex] is:
[tex]\[ \frac{E}{\frac{7E}{2}} = \frac{E \cdot 2}{7E} = \frac{2}{7} \][/tex]
Thus, the ratio of even cards to odd cards in its simplest form is:
[tex]\[ \frac{2}{7} \][/tex]
1. The probability of selecting an even card is given as [tex]\(\frac{2}{9}\)[/tex].
2. We need to determine the ratio of even cards to odd cards.
### Step-by-step breakdown:
#### Step 1: Define Variables
- Let [tex]\( E \)[/tex] be the number of even cards.
- Let [tex]\( O \)[/tex] be the number of odd cards.
- The total number of cards is then [tex]\( E + O \)[/tex].
#### Step 2: Set Up the Probability
The probability of picking an even card is:
[tex]\[ \text{Probability(Even)} = \frac{E}{E + O} \][/tex]
Given that this probability is [tex]\(\frac{2}{9}\)[/tex], we can set up the equation:
[tex]\[ \frac{E}{E + O} = \frac{2}{9} \][/tex]
#### Step 3: Solve for the Ratio [tex]\( \frac{E}{O} \)[/tex]
We can manipulate the equation to find the relationship between [tex]\( E \)[/tex] and [tex]\( O \)[/tex].
First, cross-multiply to clear the fraction:
[tex]\[ 9E = 2(E + O) \][/tex]
Next, distribute and solve for [tex]\( O \)[/tex]:
[tex]\[ 9E = 2E + 2O \][/tex]
[tex]\[ 9E - 2E = 2O \][/tex]
[tex]\[ 7E = 2O \][/tex]
Now, isolate [tex]\( O \)[/tex]:
[tex]\[ O = \frac{7E}{2} \][/tex]
#### Step 4: Determine the Ratio [tex]\( \frac{E}{O} \)[/tex]
From the above equation, we can express [tex]\( O \)[/tex] in terms of [tex]\( E \)[/tex]:
[tex]\[ E = E \][/tex]
[tex]\( O = \frac{7E}{2} \)[/tex]
Therefore, the ratio of even cards to odd cards [tex]\( \frac{E}{O} \)[/tex] is:
[tex]\[ \frac{E}{\frac{7E}{2}} = \frac{E \cdot 2}{7E} = \frac{2}{7} \][/tex]
Thus, the ratio of even cards to odd cards in its simplest form is:
[tex]\[ \frac{2}{7} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.