Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's review the key property required for three lengths to form a triangle: the triangle inequality theorem. According to this theorem, for three sides of lengths [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] to form a triangle, the following inequalities must hold:
1. [tex]\(a + b > c\)[/tex]
2. [tex]\(a + c > b\)[/tex]
3. [tex]\(b + c > a\)[/tex]
In this question, we are given a triangle with side lengths [tex]\(2x + 2\)[/tex] feet, [tex]\(x + 3\)[/tex] feet, and [tex]\(n\)[/tex] feet. We need to determine the possible values of [tex]\(n\)[/tex] that satisfy the triangle inequality theorem.
Let's apply the inequalities one by one:
1. [tex]\( (2x + 2) + (x + 3) > n \)[/tex]
[tex]\[ 2x + 2 + x + 3 > n \\ 3x + 5 > n \\ n < 3x + 5 \][/tex]
2. [tex]\( (2x + 2) + n > (x + 3) \)[/tex]
[tex]\[ 2x + 2 + n > x + 3 \\ 2x + 2 + n - x > 3 \\ x + 2 + n > 3 \\ n > x + 1 - 2 \\ n > x + 1 \][/tex]
3. [tex]\( (x + 3) + n > (2x + 2) \)[/tex]
[tex]\[ x + 3 + n > 2x + 2 \\ n > 2x + 2 - x - 3 \\ n > x - 1 \][/tex]
By combining these results, we get the range:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Therefore, the expression that represents the possible values of [tex]\(n\)[/tex] is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
So the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
1. [tex]\(a + b > c\)[/tex]
2. [tex]\(a + c > b\)[/tex]
3. [tex]\(b + c > a\)[/tex]
In this question, we are given a triangle with side lengths [tex]\(2x + 2\)[/tex] feet, [tex]\(x + 3\)[/tex] feet, and [tex]\(n\)[/tex] feet. We need to determine the possible values of [tex]\(n\)[/tex] that satisfy the triangle inequality theorem.
Let's apply the inequalities one by one:
1. [tex]\( (2x + 2) + (x + 3) > n \)[/tex]
[tex]\[ 2x + 2 + x + 3 > n \\ 3x + 5 > n \\ n < 3x + 5 \][/tex]
2. [tex]\( (2x + 2) + n > (x + 3) \)[/tex]
[tex]\[ 2x + 2 + n > x + 3 \\ 2x + 2 + n - x > 3 \\ x + 2 + n > 3 \\ n > x + 1 - 2 \\ n > x + 1 \][/tex]
3. [tex]\( (x + 3) + n > (2x + 2) \)[/tex]
[tex]\[ x + 3 + n > 2x + 2 \\ n > 2x + 2 - x - 3 \\ n > x - 1 \][/tex]
By combining these results, we get the range:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
Therefore, the expression that represents the possible values of [tex]\(n\)[/tex] is:
[tex]\[ x - 1 < n < 3x + 5 \][/tex]
So the correct answer is:
[tex]\[ \boxed{x - 1 < n < 3x + 5} \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.