At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's perform the polynomial division step-by-step to divide [tex]\(3x^3 - 5x^2 + x - 2\)[/tex] by [tex]\(x - 2\)[/tex].
### Step 1: Setup the division
We start by setting up the polynomial division with [tex]\(3x^3 - 5x^2 + x - 2\)[/tex] as the dividend and [tex]\(x - 2\)[/tex] as the divisor.
```
Dividend: 3x^3 - 5x^2 + x - 2
Divisor: x - 2
```
### Step 2: Divide the leading terms
First, divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{3x^3}{x} = 3x^2 \][/tex]
### Step 3: Multiply and subtract
Next, multiply the entire divisor by [tex]\(3x^2\)[/tex] and subtract this product from the dividend:
1. Multiply:
[tex]\[ (x - 2) \times 3x^2 = 3x^3 - 6x^2 \][/tex]
2. Subtract:
[tex]\[ (3x^3 - 5x^2 + x - 2) - (3x^3 - 6x^2) = (3x^3 - 3x^3) + (-5x^2 + 6x^2) + x - 2 = x^2 + x - 2 \][/tex]
### Step 4: Repeat the process
Continue the same process with the new polynomial [tex]\(x^2 + x - 2\)[/tex]:
1. Divide the leading terms:
[tex]\[ \frac{x^2}{x} = x \][/tex]
2. Multiply:
[tex]\[ (x - 2) \times x = x^2 - 2x \][/tex]
3. Subtract:
[tex]\[ (x^2 + x - 2) - (x^2 - 2x) = (x^2 - x^2) + (x + 2x) - 2 = 3x - 2 \][/tex]
### Step 5: Repeat the process again
Continue with the new polynomial [tex]\(3x - 2\)[/tex]:
1. Divide the leading terms:
[tex]\[ \frac{3x}{x} = 3 \][/tex]
2. Multiply:
[tex]\[ (x - 2) \times 3 = 3x - 6 \][/tex]
3. Subtract:
[tex]\[ (3x - 2) - (3x - 6) = (3x - 3x) + (-2 + 6) = 4 \][/tex]
### Step 6: Compile the quotient and remainder
After completing the division process, we find that:
- Quotient: [tex]\(3x^2 + x + 3\)[/tex]
- Remainder: [tex]\(4\)[/tex]
Therefore, the result of the division [tex]\((3x^3 - 5x^2 + x - 2) \div (x - 2)\)[/tex] is a quotient of [tex]\(3x^2 + x + 3\)[/tex] with a remainder of [tex]\(4\)[/tex].
### Step 1: Setup the division
We start by setting up the polynomial division with [tex]\(3x^3 - 5x^2 + x - 2\)[/tex] as the dividend and [tex]\(x - 2\)[/tex] as the divisor.
```
Dividend: 3x^3 - 5x^2 + x - 2
Divisor: x - 2
```
### Step 2: Divide the leading terms
First, divide the leading term of the dividend by the leading term of the divisor:
[tex]\[ \frac{3x^3}{x} = 3x^2 \][/tex]
### Step 3: Multiply and subtract
Next, multiply the entire divisor by [tex]\(3x^2\)[/tex] and subtract this product from the dividend:
1. Multiply:
[tex]\[ (x - 2) \times 3x^2 = 3x^3 - 6x^2 \][/tex]
2. Subtract:
[tex]\[ (3x^3 - 5x^2 + x - 2) - (3x^3 - 6x^2) = (3x^3 - 3x^3) + (-5x^2 + 6x^2) + x - 2 = x^2 + x - 2 \][/tex]
### Step 4: Repeat the process
Continue the same process with the new polynomial [tex]\(x^2 + x - 2\)[/tex]:
1. Divide the leading terms:
[tex]\[ \frac{x^2}{x} = x \][/tex]
2. Multiply:
[tex]\[ (x - 2) \times x = x^2 - 2x \][/tex]
3. Subtract:
[tex]\[ (x^2 + x - 2) - (x^2 - 2x) = (x^2 - x^2) + (x + 2x) - 2 = 3x - 2 \][/tex]
### Step 5: Repeat the process again
Continue with the new polynomial [tex]\(3x - 2\)[/tex]:
1. Divide the leading terms:
[tex]\[ \frac{3x}{x} = 3 \][/tex]
2. Multiply:
[tex]\[ (x - 2) \times 3 = 3x - 6 \][/tex]
3. Subtract:
[tex]\[ (3x - 2) - (3x - 6) = (3x - 3x) + (-2 + 6) = 4 \][/tex]
### Step 6: Compile the quotient and remainder
After completing the division process, we find that:
- Quotient: [tex]\(3x^2 + x + 3\)[/tex]
- Remainder: [tex]\(4\)[/tex]
Therefore, the result of the division [tex]\((3x^3 - 5x^2 + x - 2) \div (x - 2)\)[/tex] is a quotient of [tex]\(3x^2 + x + 3\)[/tex] with a remainder of [tex]\(4\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.