Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's solve this step-by-step:
Given expression:
[tex]\[ \frac{2}{3} + \frac{1}{4} \times \frac{2}{5} - \frac{3}{4} + \frac{5}{2} \][/tex]
Step 1: Evaluate the multiplication
[tex]\[ \frac{1}{4} \times \frac{2}{5} = \frac{1 \cdot 2}{4 \cdot 5} = \frac{2}{20} = \frac{1}{10} \][/tex]
Step 2: Simplify the expression by replacing the multiplication result
[tex]\[ \frac{2}{3} + \frac{1}{10} - \frac{3}{4} + \frac{5}{2} \][/tex]
Step 3: Find a common denominator for the addition and subtraction
The denominators we have are 3, 10, 4, and 2. The least common multiple (LCM) of these numbers is 60.
Step 4: Convert all fractions to have the common denominator of 60
[tex]\[ \frac{2}{3} = \frac{2 \times 20}{3 \times 20} = \frac{40}{60} \][/tex]
[tex]\[ \frac{1}{10} = \frac{1 \times 6}{10 \times 6} = \frac{6}{60} \][/tex]
[tex]\[ \frac{3}{4} = \frac{3 \times 15}{4 \times 15} = \frac{45}{60} \][/tex]
[tex]\[ \frac{5}{2} = \frac{5 \times 30}{2 \times 30} = \frac{150}{60} \][/tex]
Step 5: Perform the addition and subtraction
[tex]\[ \frac{40}{60} + \frac{6}{60} - \frac{45}{60} + \frac{150}{60} \][/tex]
Combine all the fractions:
[tex]\[ \frac{40 + 6 - 45 + 150}{60} = \frac{151}{60} \][/tex]
Step 6: Simplify if possible (it isn't in this case since 151 is a prime number and does not divide evenly by 60, and 60 already has its prime factors 2, 3, and 5)
So, the result is:
[tex]\[ \frac{151}{60} \][/tex]
Step 7: Compare the resulting fraction with the given options:
The decimal representation of this fraction is [tex]\(\approx 2.5166666666666666\)[/tex], which is clearly none of the given answer choices [tex]\(-\frac{67}{50}\)[/tex], [tex]\(\frac{13}{15}\)[/tex], [tex]\(-\frac{23}{50}\)[/tex], or [tex]\(\frac{7}{15}\)[/tex].
Therefore, the original problem seems to have no correct option based on our calculations.
Given expression:
[tex]\[ \frac{2}{3} + \frac{1}{4} \times \frac{2}{5} - \frac{3}{4} + \frac{5}{2} \][/tex]
Step 1: Evaluate the multiplication
[tex]\[ \frac{1}{4} \times \frac{2}{5} = \frac{1 \cdot 2}{4 \cdot 5} = \frac{2}{20} = \frac{1}{10} \][/tex]
Step 2: Simplify the expression by replacing the multiplication result
[tex]\[ \frac{2}{3} + \frac{1}{10} - \frac{3}{4} + \frac{5}{2} \][/tex]
Step 3: Find a common denominator for the addition and subtraction
The denominators we have are 3, 10, 4, and 2. The least common multiple (LCM) of these numbers is 60.
Step 4: Convert all fractions to have the common denominator of 60
[tex]\[ \frac{2}{3} = \frac{2 \times 20}{3 \times 20} = \frac{40}{60} \][/tex]
[tex]\[ \frac{1}{10} = \frac{1 \times 6}{10 \times 6} = \frac{6}{60} \][/tex]
[tex]\[ \frac{3}{4} = \frac{3 \times 15}{4 \times 15} = \frac{45}{60} \][/tex]
[tex]\[ \frac{5}{2} = \frac{5 \times 30}{2 \times 30} = \frac{150}{60} \][/tex]
Step 5: Perform the addition and subtraction
[tex]\[ \frac{40}{60} + \frac{6}{60} - \frac{45}{60} + \frac{150}{60} \][/tex]
Combine all the fractions:
[tex]\[ \frac{40 + 6 - 45 + 150}{60} = \frac{151}{60} \][/tex]
Step 6: Simplify if possible (it isn't in this case since 151 is a prime number and does not divide evenly by 60, and 60 already has its prime factors 2, 3, and 5)
So, the result is:
[tex]\[ \frac{151}{60} \][/tex]
Step 7: Compare the resulting fraction with the given options:
The decimal representation of this fraction is [tex]\(\approx 2.5166666666666666\)[/tex], which is clearly none of the given answer choices [tex]\(-\frac{67}{50}\)[/tex], [tex]\(\frac{13}{15}\)[/tex], [tex]\(-\frac{23}{50}\)[/tex], or [tex]\(\frac{7}{15}\)[/tex].
Therefore, the original problem seems to have no correct option based on our calculations.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.