Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To factor the polynomial [tex]\(15x^3 - 5x^2 + 6x - 2\)[/tex] by grouping, we can proceed with the following steps:
1. Group the polynomial into two pairs:
[tex]\[ (15x^3 - 5x^2) + (6x - 2) \][/tex]
2. Factor out the greatest common factor (GCF) from each pair:
- For the first group, [tex]\(15x^3 - 5x^2\)[/tex], the GCF is [tex]\(5x^2\)[/tex]:
[tex]\[ 15x^3 - 5x^2 = 5x^2(3x - 1) \][/tex]
- For the second group, [tex]\(6x - 2\)[/tex], the GCF is 2:
[tex]\[ 6x - 2 = 2(3x - 1) \][/tex]
3. Rewrite the polynomial using these common factors:
[tex]\[ 15x^3 - 5x^2 + 6x - 2 = 5x^2(3x - 1) + 2(3x - 1) \][/tex]
4. Notice that [tex]\((3x - 1)\)[/tex] is a common factor in both terms:
[tex]\[ = (3x - 1)(5x^2 + 2) \][/tex]
Therefore, the factored form of the polynomial [tex]\(15x^3 - 5x^2 + 6x - 2\)[/tex] is:
[tex]\[ (3x - 1)(5x^2 + 2) \][/tex]
Thus, the correct choice is:
[tex]\[ \left(5x^2 + 2\right)(3x - 1) \][/tex]
1. Group the polynomial into two pairs:
[tex]\[ (15x^3 - 5x^2) + (6x - 2) \][/tex]
2. Factor out the greatest common factor (GCF) from each pair:
- For the first group, [tex]\(15x^3 - 5x^2\)[/tex], the GCF is [tex]\(5x^2\)[/tex]:
[tex]\[ 15x^3 - 5x^2 = 5x^2(3x - 1) \][/tex]
- For the second group, [tex]\(6x - 2\)[/tex], the GCF is 2:
[tex]\[ 6x - 2 = 2(3x - 1) \][/tex]
3. Rewrite the polynomial using these common factors:
[tex]\[ 15x^3 - 5x^2 + 6x - 2 = 5x^2(3x - 1) + 2(3x - 1) \][/tex]
4. Notice that [tex]\((3x - 1)\)[/tex] is a common factor in both terms:
[tex]\[ = (3x - 1)(5x^2 + 2) \][/tex]
Therefore, the factored form of the polynomial [tex]\(15x^3 - 5x^2 + 6x - 2\)[/tex] is:
[tex]\[ (3x - 1)(5x^2 + 2) \][/tex]
Thus, the correct choice is:
[tex]\[ \left(5x^2 + 2\right)(3x - 1) \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.