Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the equation of a line that is parallel to [tex]\( y = 3x + 5 \)[/tex] and passes through the point [tex]\( (2, 5) \)[/tex], we need to follow these steps:
1. Identify the slope of the given line:
The given equation of the line is [tex]\( y = 3x + 5 \)[/tex]. This is in the slope-intercept form [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope. Thus, the slope of the given line is [tex]\( 3 \)[/tex].
2. Determine the form of the parallel line's equation:
A line that is parallel to the given line will have the same slope. Therefore, the equation of our parallel line will have the form [tex]\( y = 3x + c \)[/tex], where [tex]\( c \)[/tex] is the y-intercept we need to find.
3. Use the given point to find the y-intercept:
The line we are looking for must pass through the point [tex]\( (2, 5) \)[/tex]. This means when [tex]\( x = 2 \)[/tex], [tex]\( y = 5 \)[/tex]. We can substitute these values into the equation [tex]\( y = 3x + c \)[/tex] to find [tex]\( c \)[/tex].
Substituting [tex]\( x = 2 \)[/tex] and [tex]\( y = 5 \)[/tex]:
[tex]\[ 5 = 3(2) + c \][/tex]
4. Solve for the y-intercept [tex]\( c \)[/tex]:
[tex]\[ 5 = 6 + c \][/tex]
Subtract 6 from both sides to solve for [tex]\( c \)[/tex]:
[tex]\[ 5 - 6 = c \][/tex]
[tex]\[ -1 = c \][/tex]
5. Write the final equation:
With the slope [tex]\( 3 \)[/tex] and y-intercept [tex]\( -1 \)[/tex], the equation of the line is:
[tex]\[ y = 3x - 1 \][/tex]
Therefore, the equation of the line parallel to [tex]\( y = 3x + 5 \)[/tex] and passing through the point [tex]\( (2, 5) \)[/tex] is:
[tex]\[ y = 3x - 1 \][/tex]
1. Identify the slope of the given line:
The given equation of the line is [tex]\( y = 3x + 5 \)[/tex]. This is in the slope-intercept form [tex]\( y = mx + c \)[/tex], where [tex]\( m \)[/tex] is the slope. Thus, the slope of the given line is [tex]\( 3 \)[/tex].
2. Determine the form of the parallel line's equation:
A line that is parallel to the given line will have the same slope. Therefore, the equation of our parallel line will have the form [tex]\( y = 3x + c \)[/tex], where [tex]\( c \)[/tex] is the y-intercept we need to find.
3. Use the given point to find the y-intercept:
The line we are looking for must pass through the point [tex]\( (2, 5) \)[/tex]. This means when [tex]\( x = 2 \)[/tex], [tex]\( y = 5 \)[/tex]. We can substitute these values into the equation [tex]\( y = 3x + c \)[/tex] to find [tex]\( c \)[/tex].
Substituting [tex]\( x = 2 \)[/tex] and [tex]\( y = 5 \)[/tex]:
[tex]\[ 5 = 3(2) + c \][/tex]
4. Solve for the y-intercept [tex]\( c \)[/tex]:
[tex]\[ 5 = 6 + c \][/tex]
Subtract 6 from both sides to solve for [tex]\( c \)[/tex]:
[tex]\[ 5 - 6 = c \][/tex]
[tex]\[ -1 = c \][/tex]
5. Write the final equation:
With the slope [tex]\( 3 \)[/tex] and y-intercept [tex]\( -1 \)[/tex], the equation of the line is:
[tex]\[ y = 3x - 1 \][/tex]
Therefore, the equation of the line parallel to [tex]\( y = 3x + 5 \)[/tex] and passing through the point [tex]\( (2, 5) \)[/tex] is:
[tex]\[ y = 3x - 1 \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.