Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which term will change the end behavior of the given polynomial [tex]\( y = -2x^7 + 5x^6 - 24 \)[/tex], we need to understand what dictates the end behavior of polynomials.
The end behavior of a polynomial function is determined by its highest-degree term. For the polynomial [tex]\( y = -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term is [tex]\( -2x^7 \)[/tex].
Let's analyze how each of the provided terms affects the highest-degree term:
1. Term: [tex]\( -x^8 \)[/tex]
- When [tex]\( -x^8 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the new highest-degree term becomes [tex]\( -x^8 \)[/tex].
- Degree: 8 (higher than 7)
- Effect on end behavior: This term will change the end behavior of the polynomial because it introduces a new leading term with a higher degree.
2. Term: [tex]\( -3x^5 \)[/tex]
- When [tex]\( -3x^5 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term remains [tex]\( -2x^7 \)[/tex].
- Degree: 5 (lower than 7)
- Effect on end behavior: This term will not change the end behavior as it does not affect the highest-degree term.
3. Term: [tex]\( 5x^7 \)[/tex]
- When [tex]\( 5x^7 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term would be:
[tex]\[ -2x^7 + 5x^7 = 3x^7 \][/tex]
- Degree: 7 (same as the existing highest-degree term)
- Effect on end behavior: While it changes the coefficient of the highest-degree term, it does not change the degree itself. The end behavior, therefore, stays determined by [tex]\( x^7 \)[/tex].
4. Term: 1,000
- When [tex]\( 1,000 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term remains [tex]\( -2x^7 \)[/tex].
- This just adds a constant term.
- Effect on end behavior: This term will not change the end behavior as it does not affect the polynomial's degree at all.
5. Term: [tex]\( -300 \)[/tex]
- When [tex]\( -300 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term remains [tex]\( -2x^7 \)[/tex].
- This just adds another constant term.
- Effect on end behavior: This term will not change the end behavior as it does not affect the polynomial's degree at all.
Given this analysis, the term [tex]\( -x^8 \)[/tex] is the only one that changes the highest-degree term and thereby affects the end behavior of the polynomial. Therefore, the answer is:
[tex]\[ \boxed{-x^8} \][/tex]
The end behavior of a polynomial function is determined by its highest-degree term. For the polynomial [tex]\( y = -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term is [tex]\( -2x^7 \)[/tex].
Let's analyze how each of the provided terms affects the highest-degree term:
1. Term: [tex]\( -x^8 \)[/tex]
- When [tex]\( -x^8 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the new highest-degree term becomes [tex]\( -x^8 \)[/tex].
- Degree: 8 (higher than 7)
- Effect on end behavior: This term will change the end behavior of the polynomial because it introduces a new leading term with a higher degree.
2. Term: [tex]\( -3x^5 \)[/tex]
- When [tex]\( -3x^5 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term remains [tex]\( -2x^7 \)[/tex].
- Degree: 5 (lower than 7)
- Effect on end behavior: This term will not change the end behavior as it does not affect the highest-degree term.
3. Term: [tex]\( 5x^7 \)[/tex]
- When [tex]\( 5x^7 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term would be:
[tex]\[ -2x^7 + 5x^7 = 3x^7 \][/tex]
- Degree: 7 (same as the existing highest-degree term)
- Effect on end behavior: While it changes the coefficient of the highest-degree term, it does not change the degree itself. The end behavior, therefore, stays determined by [tex]\( x^7 \)[/tex].
4. Term: 1,000
- When [tex]\( 1,000 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term remains [tex]\( -2x^7 \)[/tex].
- This just adds a constant term.
- Effect on end behavior: This term will not change the end behavior as it does not affect the polynomial's degree at all.
5. Term: [tex]\( -300 \)[/tex]
- When [tex]\( -300 \)[/tex] is added to [tex]\( -2x^7 + 5x^6 - 24 \)[/tex], the highest-degree term remains [tex]\( -2x^7 \)[/tex].
- This just adds another constant term.
- Effect on end behavior: This term will not change the end behavior as it does not affect the polynomial's degree at all.
Given this analysis, the term [tex]\( -x^8 \)[/tex] is the only one that changes the highest-degree term and thereby affects the end behavior of the polynomial. Therefore, the answer is:
[tex]\[ \boxed{-x^8} \][/tex]
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.