Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Solve for [tex]\( x \)[/tex]:

[tex]\[ -x(x - 2) + x + (2x + 8) + 10 = 60 \][/tex]


Sagot :

Let's solve the equation step-by-step:

[tex]\[ -x(x-2) + x + (2x + 8) + 10 = 60 \][/tex]

First, simplify the left-hand side of the equation. We'll start with the term [tex]\(-x(x-2)\)[/tex]:

[tex]\[ -x(x-2) = -x^2 + 2x \][/tex]

Substituting this back into the equation, we have:

[tex]\[ -x^2 + 2x + x + (2x + 8) + 10 = 60 \][/tex]

Now, combine all the like terms on the left-hand side:

[tex]\[ -x^2 + 5x + 8 + 10 = 60 \][/tex]

Simplify further by combining the constants:

[tex]\[ -x^2 + 5x + 18 = 60 \][/tex]

To solve for [tex]\(x\)[/tex], we need to set the equation to zero. Subtract 60 from both sides:

[tex]\[ -x^2 + 5x + 18 - 60 = 0 \][/tex]

Simplify the constants:

[tex]\[ -x^2 + 5x - 42 = 0 \][/tex]

Now, to solve the quadratic equation [tex]\(-x^2 + 5x - 42 = 0\)[/tex], we can use the quadratic formula, which is given by:

[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

In our equation, [tex]\(a = -1\)[/tex], [tex]\(b = 5\)[/tex], and [tex]\(c = -42\)[/tex]. Substituting these values into the quadratic formula:

[tex]\[ x = \frac{-5 \pm \sqrt{5^2 - 4(-1)(-42)}}{2(-1)} \][/tex]

Calculate the discriminant:

[tex]\[ \Delta = b^2 - 4ac = 5^2 - 4(-1)(-42) = 25 - 168 = -143 \][/tex]

Since the discriminant is negative, we will have complex solutions. Computing the square root of [tex]\(-143\)[/tex]:

[tex]\[ \sqrt{-143} = i\sqrt{143} \][/tex]

Substitute back into the quadratic formula:

[tex]\[ x = \frac{-5 \pm \sqrt{-143}}{-2} = \frac{-5 \pm i\sqrt{143}}{-2} \][/tex]

Simplify:

[tex]\[ x = \frac{-5}{-2} \pm \frac{i\sqrt{143}}{-2} = \frac{5}{2} \mp \frac{i\sqrt{143}}{2} \][/tex]

Thus, the solutions to the equation are:

[tex]\[ x = \frac{5}{2} - \frac{\sqrt{143}i}{2} \quad \text{and} \quad x = \frac{5}{2} + \frac{\sqrt{143}i}{2} \][/tex]

So the solutions are:

[tex]\[ x = \frac{5}{2} - \frac{\sqrt{143}i}{2}, \quad x = \frac{5}{2} + \frac{\sqrt{143}i}{2} \][/tex]