Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Solve for [tex]\( x \)[/tex]:

[tex]\[ 4x^2 + 72 = 6x^2 \][/tex]


Sagot :

Certainly! Let's solve the equation step-by-step together:

The given equation is:

[tex]\[ 4x^2 + 72 = 6x^2 \][/tex]

Step 1: Move all terms to one side of the equation.

We need to move all the terms involving [tex]\(x\)[/tex] to one side of the equation and constants to the other side. In this case, we can subtract [tex]\(4x^2\)[/tex] from both sides:

[tex]\[ 4x^2 + 72 - 4x^2 = 6x^2 - 4x^2 \][/tex]

Simplifying this, we get:

[tex]\[ 72 = 2x^2 \][/tex]

Step 2: Isolate the term involving [tex]\(x^2\)[/tex].

Next, we divide both sides of the equation by 2 to isolate [tex]\(x^2\)[/tex]:

[tex]\[ \frac{72}{2} = x^2 \][/tex]

Simplifying this, we obtain:

[tex]\[ 36 = x^2 \][/tex]

Step 3: Solve for [tex]\(x\)[/tex].

Now, we need to find the value(s) of [tex]\(x\)[/tex] that satisfy [tex]\(x^2 = 36\)[/tex]. To do this, we take the square root of both sides:

[tex]\[ x = \pm\sqrt{36} \][/tex]

Evaluating the square root, we get:

[tex]\[ x = \pm 6 \][/tex]

Thus, the solutions to the equation [tex]\(4x^2 + 72 = 6x^2\)[/tex] are:

[tex]\[ x = 6 \text{ and } x = -6 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.