Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! Let's solve the problem step-by-step.
1. Identify the given values:
- Initial velocity ([tex]\(u\)[/tex]) = 20 m/s
- Final velocity ([tex]\(v\)[/tex]) = 0 m/s (the car comes to a stop)
- Distance ([tex]\(d\)[/tex]) = 48 m
- Mass ([tex]\(m\)[/tex]) = 1000 kg
2. Determine the acceleration ([tex]\(a\)[/tex]) using the kinematic equation:
[tex]\[ v^2 - u^2 = 2 a d \][/tex]
Rearrange the equation to solve for acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = \frac{v^2 - u^2}{2 d} \][/tex]
Substitute the given values into the equation:
[tex]\[ a = \frac{(0)^2 - (20)^2}{2 \times 48} \][/tex]
[tex]\[ a = \frac{-400}{96} \][/tex]
[tex]\[ a = -4.166666666666667 \, \text{m/s}^2 \][/tex]
The negative sign indicates that the acceleration is actually deceleration (i.e., the car is slowing down).
3. Calculate the braking force ([tex]\(F\)[/tex]) using Newton's second law:
[tex]\[ F = m \cdot a \][/tex]
Substitute the mass and the calculated acceleration into the equation:
[tex]\[ F = 1000 \, \text{kg} \times (-4.166666666666667 \, \text{m/s}^2) \][/tex]
[tex]\[ F = -4166.666666666667 \, \text{N} \][/tex]
The negative sign in the force indicates that it is a braking force (opposite to the direction of motion).
4. Round to the nearest hundred:
[tex]\[ F \approx -4200 \, \text{N} \][/tex]
Therefore, the braking force applied by the driver is approximately [tex]\( -4200 \)[/tex] N.
1. Identify the given values:
- Initial velocity ([tex]\(u\)[/tex]) = 20 m/s
- Final velocity ([tex]\(v\)[/tex]) = 0 m/s (the car comes to a stop)
- Distance ([tex]\(d\)[/tex]) = 48 m
- Mass ([tex]\(m\)[/tex]) = 1000 kg
2. Determine the acceleration ([tex]\(a\)[/tex]) using the kinematic equation:
[tex]\[ v^2 - u^2 = 2 a d \][/tex]
Rearrange the equation to solve for acceleration ([tex]\(a\)[/tex]):
[tex]\[ a = \frac{v^2 - u^2}{2 d} \][/tex]
Substitute the given values into the equation:
[tex]\[ a = \frac{(0)^2 - (20)^2}{2 \times 48} \][/tex]
[tex]\[ a = \frac{-400}{96} \][/tex]
[tex]\[ a = -4.166666666666667 \, \text{m/s}^2 \][/tex]
The negative sign indicates that the acceleration is actually deceleration (i.e., the car is slowing down).
3. Calculate the braking force ([tex]\(F\)[/tex]) using Newton's second law:
[tex]\[ F = m \cdot a \][/tex]
Substitute the mass and the calculated acceleration into the equation:
[tex]\[ F = 1000 \, \text{kg} \times (-4.166666666666667 \, \text{m/s}^2) \][/tex]
[tex]\[ F = -4166.666666666667 \, \text{N} \][/tex]
The negative sign in the force indicates that it is a braking force (opposite to the direction of motion).
4. Round to the nearest hundred:
[tex]\[ F \approx -4200 \, \text{N} \][/tex]
Therefore, the braking force applied by the driver is approximately [tex]\( -4200 \)[/tex] N.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.