Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's break down the step-by-step solution to the problem using the provided data from the table.
#### Given Information:
The table gives us the joint probabilities and total probabilities for blood types A, B, AB, and O with either positive (Pos.) or negative (Neg.) Rh factors.
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline & A & B & AB & O & \text{Total} \\ \hline \text{Neg.} & 0.07 & 0.02 & 0.01 & 0.08 & 0.18 \\ \hline \text{Pos.} & 0.33 & 0.09 & 0.03 & 0.37 & 0.82 \\ \hline \text{Total} & 0.40 & 0.11 & 0.04 & 0.45 & 1.0 \\ \hline \end{array} \][/tex]
#### To Find:
1. The probability that a person has a positive Rh factor given that he/she has type O blood, [tex]\( P(\text{Pos. } | \text{ O}) \)[/tex].
2. The true comparison for the statement "There is a greater probability for a person to have a [Type] than a person to have a positive Rh factor given type O blood."
#### Solution for [tex]\( P(\text{Pos. } | \text{ O}) \)[/tex]:
We need to find the conditional probability, which can be calculated using the formula:
[tex]\[ P(\text{Pos. } | \text{ O}) = \frac{P(\text{Pos. and O})}{P(\text{O})} \][/tex]
From the table:
- [tex]\( P(\text{Pos. and O}) = 0.37 \)[/tex]
- [tex]\( P(\text{O}) = 0.45 \)[/tex]
So:
[tex]\[ P(\text{Pos. } | \text{ O}) = \frac{0.37}{0.45} \approx 0.8222 \][/tex]
Thus, the probability that a person has a positive Rh factor given that he/she has type O blood is approximately [tex]\( 0.8222 \)[/tex] or [tex]\( 82.22\% \)[/tex].
#### Comparison Statement:
The calculated probability [tex]\( P(\text{Pos. } | \text{ O}) \)[/tex] is 82.22%. We need to check this against the total probabilities of other types to find a match with “greater probability”.
[tex]\[ \begin{array}{c|c} \text{Blood Type} & \text{Total Probability} \\ \hline \text{A} & 0.40 \\ \text{B} & 0.11 \\ \text{AB} & 0.04 \\ \text{O} & 0.45 \\ \end{array} \][/tex]
Comparing 82.22%:
- [tex]\( P(\text{A}) = 0.40 \)[/tex] which is 40%
- [tex]\( P(\text{B}) = 0.11 \)[/tex] which is 11%
- [tex]\( P(\text{AB}) = 0.04 \)[/tex] which is 4%
- [tex]\( P(\text{O}) = 0.45 \)[/tex] which is 45%
Clearly, [tex]\( 45\% > 82.22\% \)[/tex].
Hence, we can complete the statement:
The probability that a person has a positive Rh factor given that he/she has type [tex]$O$[/tex] blood is [tex]$82.22\%$[/tex]. There is a greater probability for a person to have type [tex]$O$[/tex] blood than a person to have a positive Rh factor given type [tex]$O$[/tex] blood.
#### Given Information:
The table gives us the joint probabilities and total probabilities for blood types A, B, AB, and O with either positive (Pos.) or negative (Neg.) Rh factors.
[tex]\[ \begin{array}{|c|c|c|c|c|c|} \hline & A & B & AB & O & \text{Total} \\ \hline \text{Neg.} & 0.07 & 0.02 & 0.01 & 0.08 & 0.18 \\ \hline \text{Pos.} & 0.33 & 0.09 & 0.03 & 0.37 & 0.82 \\ \hline \text{Total} & 0.40 & 0.11 & 0.04 & 0.45 & 1.0 \\ \hline \end{array} \][/tex]
#### To Find:
1. The probability that a person has a positive Rh factor given that he/she has type O blood, [tex]\( P(\text{Pos. } | \text{ O}) \)[/tex].
2. The true comparison for the statement "There is a greater probability for a person to have a [Type] than a person to have a positive Rh factor given type O blood."
#### Solution for [tex]\( P(\text{Pos. } | \text{ O}) \)[/tex]:
We need to find the conditional probability, which can be calculated using the formula:
[tex]\[ P(\text{Pos. } | \text{ O}) = \frac{P(\text{Pos. and O})}{P(\text{O})} \][/tex]
From the table:
- [tex]\( P(\text{Pos. and O}) = 0.37 \)[/tex]
- [tex]\( P(\text{O}) = 0.45 \)[/tex]
So:
[tex]\[ P(\text{Pos. } | \text{ O}) = \frac{0.37}{0.45} \approx 0.8222 \][/tex]
Thus, the probability that a person has a positive Rh factor given that he/she has type O blood is approximately [tex]\( 0.8222 \)[/tex] or [tex]\( 82.22\% \)[/tex].
#### Comparison Statement:
The calculated probability [tex]\( P(\text{Pos. } | \text{ O}) \)[/tex] is 82.22%. We need to check this against the total probabilities of other types to find a match with “greater probability”.
[tex]\[ \begin{array}{c|c} \text{Blood Type} & \text{Total Probability} \\ \hline \text{A} & 0.40 \\ \text{B} & 0.11 \\ \text{AB} & 0.04 \\ \text{O} & 0.45 \\ \end{array} \][/tex]
Comparing 82.22%:
- [tex]\( P(\text{A}) = 0.40 \)[/tex] which is 40%
- [tex]\( P(\text{B}) = 0.11 \)[/tex] which is 11%
- [tex]\( P(\text{AB}) = 0.04 \)[/tex] which is 4%
- [tex]\( P(\text{O}) = 0.45 \)[/tex] which is 45%
Clearly, [tex]\( 45\% > 82.22\% \)[/tex].
Hence, we can complete the statement:
The probability that a person has a positive Rh factor given that he/she has type [tex]$O$[/tex] blood is [tex]$82.22\%$[/tex]. There is a greater probability for a person to have type [tex]$O$[/tex] blood than a person to have a positive Rh factor given type [tex]$O$[/tex] blood.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.