Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine the independence of events, we can use the concept of conditional probability. Two events [tex]\( X \)[/tex] and [tex]\( Y \)[/tex] are independent if and only if [tex]\( P(X \cap Y) = P(X) \cdot P(Y) \)[/tex], or equivalently, [tex]\( P(X \mid Y) = P(X) \)[/tex].
Let’s examine the provided data:
### Probabilities of Individual Events
1. Total number of employees: 60
2. Probability of an employee being male ([tex]\( P(A) \)[/tex]):
[tex]\[ P(A) = \frac{36}{60} = 0.6 \][/tex]
3. Probability of an employee being female ([tex]\( P(B) \)[/tex]):
[tex]\[ P(B) = \frac{24}{60} = 0.4 \][/tex]
4. Probability of an employee taking public transportation ([tex]\( P(C) \)[/tex]):
[tex]\[ P(C) = \frac{20}{60} = 0.3333 \][/tex]
5. Probability of an employee taking their own transportation ([tex]\( P(D) \)[/tex]):
[tex]\[ P(D) = \frac{30}{60} = 0.5 \][/tex]
6. Probability of an employee taking other forms of transportation ([tex]\( P(E) \)[/tex]):
[tex]\[ P(E) = \frac{10}{60} = 0.1667 \][/tex]
### Conditional Probabilities
1. Probability that an employee is male given that they take public transportation ([tex]\( P(A \mid C) \)[/tex]):
- 12 out of 20 public transport users are male:
[tex]\[ P(A \mid C) = \frac{12}{20} = 0.6 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid C) = P(A) \quad (\text{True}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( C \)[/tex] are independent.
2. Probability that an employee is male given that they take their own transportation ([tex]\( P(A \mid D) \)[/tex]):
- 20 out of 30 own transport users are male:
[tex]\[ P(A \mid D) = \frac{20}{30} = 0.6667 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid D) \neq P(A) \quad (\text{False}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( D \)[/tex] are not independent.
3. Probability that an employee is female given that they take their own transportation ([tex]\( P(B \mid D) \)[/tex]):
- 10 out of 30 own transport users are female:
[tex]\[ P(B \mid D) = \frac{10}{30} = 0.3333 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid D) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( D \)[/tex] are not independent.
4. Probability that an employee is female given that they use other forms of transport ([tex]\( P(B \mid E) \)[/tex]):
- 6 out of 10 other transport users are female:
[tex]\[ P(B \mid E) = \frac{6}{10} = 0.6 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid E) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( E \)[/tex] are not independent.
Therefore, the only pair of independent events from the choices given is:
[tex]\[ A \text{ and } C \: (\text{The employee is male and takes public transportation}) \][/tex]
So, the two events that are independent are:
[tex]\[ \boxed{A \text{ and } C} \][/tex]
Let’s examine the provided data:
### Probabilities of Individual Events
1. Total number of employees: 60
2. Probability of an employee being male ([tex]\( P(A) \)[/tex]):
[tex]\[ P(A) = \frac{36}{60} = 0.6 \][/tex]
3. Probability of an employee being female ([tex]\( P(B) \)[/tex]):
[tex]\[ P(B) = \frac{24}{60} = 0.4 \][/tex]
4. Probability of an employee taking public transportation ([tex]\( P(C) \)[/tex]):
[tex]\[ P(C) = \frac{20}{60} = 0.3333 \][/tex]
5. Probability of an employee taking their own transportation ([tex]\( P(D) \)[/tex]):
[tex]\[ P(D) = \frac{30}{60} = 0.5 \][/tex]
6. Probability of an employee taking other forms of transportation ([tex]\( P(E) \)[/tex]):
[tex]\[ P(E) = \frac{10}{60} = 0.1667 \][/tex]
### Conditional Probabilities
1. Probability that an employee is male given that they take public transportation ([tex]\( P(A \mid C) \)[/tex]):
- 12 out of 20 public transport users are male:
[tex]\[ P(A \mid C) = \frac{12}{20} = 0.6 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid C) = P(A) \quad (\text{True}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( C \)[/tex] are independent.
2. Probability that an employee is male given that they take their own transportation ([tex]\( P(A \mid D) \)[/tex]):
- 20 out of 30 own transport users are male:
[tex]\[ P(A \mid D) = \frac{20}{30} = 0.6667 \][/tex]
Compare this with [tex]\( P(A) \)[/tex]:
[tex]\[ P(A \mid D) \neq P(A) \quad (\text{False}) \][/tex]
Thus, events [tex]\( A \)[/tex] and [tex]\( D \)[/tex] are not independent.
3. Probability that an employee is female given that they take their own transportation ([tex]\( P(B \mid D) \)[/tex]):
- 10 out of 30 own transport users are female:
[tex]\[ P(B \mid D) = \frac{10}{30} = 0.3333 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid D) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( D \)[/tex] are not independent.
4. Probability that an employee is female given that they use other forms of transport ([tex]\( P(B \mid E) \)[/tex]):
- 6 out of 10 other transport users are female:
[tex]\[ P(B \mid E) = \frac{6}{10} = 0.6 \][/tex]
Compare this with [tex]\( P(B) \)[/tex]:
[tex]\[ P(B \mid E) \neq P(B) \quad (\text{False}) \][/tex]
Thus, events [tex]\( B \)[/tex] and [tex]\( E \)[/tex] are not independent.
Therefore, the only pair of independent events from the choices given is:
[tex]\[ A \text{ and } C \: (\text{The employee is male and takes public transportation}) \][/tex]
So, the two events that are independent are:
[tex]\[ \boxed{A \text{ and } C} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.