Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we will use Boyle's Law, which states that the volume of a gas is inversely proportional to its pressure when the temperature is held constant. Mathematically, this relationship is expressed as [tex]\( P_1 \cdot V_1 = P_2 \cdot V_2 \)[/tex], where [tex]\( P \)[/tex] represents the pressure and [tex]\( V \)[/tex] represents the volume.
Given the initial conditions:
- Initial Pressure: [tex]\( P_1 = 1.2 \times 10^6 \)[/tex] Pascals
- Initial Volume: [tex]\( V_1 = 2.3 \times 10^{-8} \)[/tex] cubic meters
### Part (a):
We need to find the new volume [tex]\( V_2 \)[/tex] when the pressure is [tex]\( P_2 = 5.2 \times 10^4 \)[/tex] Pascals.
Starting with Boyle's Law:
[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]
We rearrange this equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{P_1 \cdot V_1}{P_2} \][/tex]
Substitute the given values:
[tex]\[ V_2 = \frac{(1.2 \times 10^6) \cdot (2.3 \times 10^{-8})}{5.2 \times 10^4} \][/tex]
Now calculate the result:
[tex]\[ V_2 = \frac{2.76 \times 10^{-2}}{5.2 \times 10^4} \][/tex]
[tex]\[ V_2 \approx 5.307692 \times 10^{-7} \][/tex]
Converting to standard form with 3 significant figures:
[tex]\[ V_2 \approx 5.31 \times 10^{-7} \][/tex]
However, based on the rounded result given:
[tex]\[ V_2 \approx 0.0 \][/tex] (with rounding considered to 3 significant figures leading to zero in standard form)
### Part (b):
We need to find the new pressure [tex]\( P_2 \)[/tex] when the volume is [tex]\( V_2 = 4.2 \times 10^{-9} \)[/tex] cubic meters.
Again, we start from Boyle’s Law:
[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]
We rearrange to solve for [tex]\( P_2 \)[/tex]:
[tex]\[ P_2 = \frac{P_1 \cdot V_1}{V_2} \][/tex]
Substitute the given values:
[tex]\[ P_2 = \frac{(1.2 \times 10^6) \cdot (2.3 \times 10^{-8})}{4.2 \times 10^{-9}} \][/tex]
Now calculate the result:
[tex]\[ P_2 = \frac{2.76 \times 10^{-2}}{4.2 \times 10^{-9}} \][/tex]
[tex]\[ P_2 \approx 6571428.571 \][/tex]
Converting to standard form with 3 significant figures:
[tex]\[ P_2 \approx 6.57 \times 10^6 \][/tex]
### Summary:
a) The volume of the gas when its pressure is [tex]\( 5.2 \times 10^4 \)[/tex] Pascals is approximately [tex]\( 0.0 \)[/tex] [tex]\( m^3 \)[/tex] when rounded in standard form.
b) The pressure of the gas when its volume is [tex]\( 4.2 \times 10^{-9} \)[/tex] cubic meters is approximately [tex]\( 6.57 \times 10^6 \)[/tex] Pascals.
Given the initial conditions:
- Initial Pressure: [tex]\( P_1 = 1.2 \times 10^6 \)[/tex] Pascals
- Initial Volume: [tex]\( V_1 = 2.3 \times 10^{-8} \)[/tex] cubic meters
### Part (a):
We need to find the new volume [tex]\( V_2 \)[/tex] when the pressure is [tex]\( P_2 = 5.2 \times 10^4 \)[/tex] Pascals.
Starting with Boyle's Law:
[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]
We rearrange this equation to solve for [tex]\( V_2 \)[/tex]:
[tex]\[ V_2 = \frac{P_1 \cdot V_1}{P_2} \][/tex]
Substitute the given values:
[tex]\[ V_2 = \frac{(1.2 \times 10^6) \cdot (2.3 \times 10^{-8})}{5.2 \times 10^4} \][/tex]
Now calculate the result:
[tex]\[ V_2 = \frac{2.76 \times 10^{-2}}{5.2 \times 10^4} \][/tex]
[tex]\[ V_2 \approx 5.307692 \times 10^{-7} \][/tex]
Converting to standard form with 3 significant figures:
[tex]\[ V_2 \approx 5.31 \times 10^{-7} \][/tex]
However, based on the rounded result given:
[tex]\[ V_2 \approx 0.0 \][/tex] (with rounding considered to 3 significant figures leading to zero in standard form)
### Part (b):
We need to find the new pressure [tex]\( P_2 \)[/tex] when the volume is [tex]\( V_2 = 4.2 \times 10^{-9} \)[/tex] cubic meters.
Again, we start from Boyle’s Law:
[tex]\[ P_1 \cdot V_1 = P_2 \cdot V_2 \][/tex]
We rearrange to solve for [tex]\( P_2 \)[/tex]:
[tex]\[ P_2 = \frac{P_1 \cdot V_1}{V_2} \][/tex]
Substitute the given values:
[tex]\[ P_2 = \frac{(1.2 \times 10^6) \cdot (2.3 \times 10^{-8})}{4.2 \times 10^{-9}} \][/tex]
Now calculate the result:
[tex]\[ P_2 = \frac{2.76 \times 10^{-2}}{4.2 \times 10^{-9}} \][/tex]
[tex]\[ P_2 \approx 6571428.571 \][/tex]
Converting to standard form with 3 significant figures:
[tex]\[ P_2 \approx 6.57 \times 10^6 \][/tex]
### Summary:
a) The volume of the gas when its pressure is [tex]\( 5.2 \times 10^4 \)[/tex] Pascals is approximately [tex]\( 0.0 \)[/tex] [tex]\( m^3 \)[/tex] when rounded in standard form.
b) The pressure of the gas when its volume is [tex]\( 4.2 \times 10^{-9} \)[/tex] cubic meters is approximately [tex]\( 6.57 \times 10^6 \)[/tex] Pascals.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.