Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the inverse of the function [tex]\( f(x) = 5x \)[/tex], we need to follow these steps:
1. Definition of the Function:
We start with the given function [tex]\( f(x) = 5x \)[/tex].
2. Rewrite using [tex]\( y \)[/tex]:
To find the inverse function, we'll rewrite [tex]\( f(x) \)[/tex] as [tex]\( y \)[/tex]:
[tex]\[ y = 5x \][/tex]
3. Solve for [tex]\( x \)[/tex]:
We need to solve this equation for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = 5x \][/tex]
Divide both sides of the equation by 5 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y}{5} \][/tex]
4. Express the Inverse Function:
Since [tex]\( x = \frac{y}{5} \)[/tex], we can write the inverse function [tex]\( f^{-1}(x) \)[/tex]. To match the notation, replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] in our final expression:
[tex]\[ f^{-1}(x) = \frac{x}{5} \][/tex]
5. Select the Correct Option:
Among the given options:
- [tex]\( f^{-1}(x) = -5x \)[/tex]
- [tex]\( f^{-1}(\pi) = -\frac{1}{5} x \)[/tex]
- [tex]\( f^{-1}(x) = \frac{1}{5} x \)[/tex]
- [tex]\( f^{-1}(x) = 5x \)[/tex]
The correct option is:
[tex]\[ f^{-1}(x) = \frac{1}{5} x \][/tex]
Therefore, the correct answer is the third option:
[tex]\[ f^{-1}(x) = \frac{1}{5} x \][/tex]
1. Definition of the Function:
We start with the given function [tex]\( f(x) = 5x \)[/tex].
2. Rewrite using [tex]\( y \)[/tex]:
To find the inverse function, we'll rewrite [tex]\( f(x) \)[/tex] as [tex]\( y \)[/tex]:
[tex]\[ y = 5x \][/tex]
3. Solve for [tex]\( x \)[/tex]:
We need to solve this equation for [tex]\( x \)[/tex] in terms of [tex]\( y \)[/tex]:
[tex]\[ y = 5x \][/tex]
Divide both sides of the equation by 5 to isolate [tex]\( x \)[/tex]:
[tex]\[ x = \frac{y}{5} \][/tex]
4. Express the Inverse Function:
Since [tex]\( x = \frac{y}{5} \)[/tex], we can write the inverse function [tex]\( f^{-1}(x) \)[/tex]. To match the notation, replace [tex]\( y \)[/tex] with [tex]\( x \)[/tex] in our final expression:
[tex]\[ f^{-1}(x) = \frac{x}{5} \][/tex]
5. Select the Correct Option:
Among the given options:
- [tex]\( f^{-1}(x) = -5x \)[/tex]
- [tex]\( f^{-1}(\pi) = -\frac{1}{5} x \)[/tex]
- [tex]\( f^{-1}(x) = \frac{1}{5} x \)[/tex]
- [tex]\( f^{-1}(x) = 5x \)[/tex]
The correct option is:
[tex]\[ f^{-1}(x) = \frac{1}{5} x \][/tex]
Therefore, the correct answer is the third option:
[tex]\[ f^{-1}(x) = \frac{1}{5} x \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.