Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which of the given functions has an inverse that is also a function, we need to ensure that the function in question has unique [tex]\( y \)[/tex]-values for each [tex]\( x \)[/tex]-value. In other words, no [tex]\( y \)[/tex]-value should be repeated for different [tex]\( x \)[/tex]-values. This property ensures that the function is one-to-one and therefore has an inverse that is also a function.
Given sets:
1. [tex]\(\{(-1, -2), (0, 4), (1, 3), (5, 14), (7, 4)\}\)[/tex]
2. [tex]\(\{(-1, 2), (0, 4), (1, 5), (5, 4), (7, 2)\}\)[/tex]
3. [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex]
4. [tex]\(\{(-1, 4), (0, 4), (1, 2), (5, 3), (7, 1)\}\)[/tex]
We will check each set to see if [tex]\( y \)[/tex]-values are unique.
### 1. [tex]\(\{(-1, -2), (0, 4), (1, 3), (5, 14), (7, 4)\}\)[/tex]
[tex]\[ y\text{-values: } \{-2, 4, 3, 14, 4\} \][/tex]
Here, the [tex]\( y \)[/tex]-value 4 is repeated (for [tex]\( x = 0 \)[/tex] and [tex]\( x = 7 \)[/tex]). Therefore, this function does not have a unique inverse.
### 2. [tex]\(\{(-1, 2), (0, 4), (1, 5), (5, 4), (7, 2)\}\)[/tex]
[tex]\[ y\text{-values: } \{2, 4, 5, 4, 2\} \][/tex]
Here, the [tex]\( y \)[/tex]-values 2 and 4 are repeated. Thus, this function does not have a unique inverse.
### 3. [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex]
[tex]\[ y\text{-values: } \{3, 4, 14, 6, 2\} \][/tex]
Here, all the [tex]\( y \)[/tex]-values are unique. Therefore, this function potentially has an inverse that is also a function, making it one-to-one.
### 4. [tex]\(\{(-1, 4), (0, 4), (1, 2), (5, 3), (7, 1)\}\)[/tex]
[tex]\[ y\text{-values: } \{4, 4, 2, 3, 1\} \][/tex]
Here, the [tex]\( y \)[/tex]-value 4 is repeated (for [tex]\( x = -1 \)[/tex] and [tex]\( x = 0 \)[/tex]). Thus, this function does not have a unique inverse.
Based on the analysis, we can conclude that the function:
[tex]\[ \{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\} \][/tex]
has an inverse that is also a function. Thus, the correct function is the third one.
Given sets:
1. [tex]\(\{(-1, -2), (0, 4), (1, 3), (5, 14), (7, 4)\}\)[/tex]
2. [tex]\(\{(-1, 2), (0, 4), (1, 5), (5, 4), (7, 2)\}\)[/tex]
3. [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex]
4. [tex]\(\{(-1, 4), (0, 4), (1, 2), (5, 3), (7, 1)\}\)[/tex]
We will check each set to see if [tex]\( y \)[/tex]-values are unique.
### 1. [tex]\(\{(-1, -2), (0, 4), (1, 3), (5, 14), (7, 4)\}\)[/tex]
[tex]\[ y\text{-values: } \{-2, 4, 3, 14, 4\} \][/tex]
Here, the [tex]\( y \)[/tex]-value 4 is repeated (for [tex]\( x = 0 \)[/tex] and [tex]\( x = 7 \)[/tex]). Therefore, this function does not have a unique inverse.
### 2. [tex]\(\{(-1, 2), (0, 4), (1, 5), (5, 4), (7, 2)\}\)[/tex]
[tex]\[ y\text{-values: } \{2, 4, 5, 4, 2\} \][/tex]
Here, the [tex]\( y \)[/tex]-values 2 and 4 are repeated. Thus, this function does not have a unique inverse.
### 3. [tex]\(\{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\}\)[/tex]
[tex]\[ y\text{-values: } \{3, 4, 14, 6, 2\} \][/tex]
Here, all the [tex]\( y \)[/tex]-values are unique. Therefore, this function potentially has an inverse that is also a function, making it one-to-one.
### 4. [tex]\(\{(-1, 4), (0, 4), (1, 2), (5, 3), (7, 1)\}\)[/tex]
[tex]\[ y\text{-values: } \{4, 4, 2, 3, 1\} \][/tex]
Here, the [tex]\( y \)[/tex]-value 4 is repeated (for [tex]\( x = -1 \)[/tex] and [tex]\( x = 0 \)[/tex]). Thus, this function does not have a unique inverse.
Based on the analysis, we can conclude that the function:
[tex]\[ \{(-1, 3), (0, 4), (1, 14), (5, 6), (7, 2)\} \][/tex]
has an inverse that is also a function. Thus, the correct function is the third one.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.