Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the cost of one sundae, [tex]\( s \)[/tex], and one cone, [tex]\( c \)[/tex], we can set up and solve a system of linear equations based on the information provided.
### Step-by-Step Solution:
1. Identify the given information and formulate the equations:
- Mark buys 4 sundaes and 3 cones for a total of [tex]$26. - This can be written as: \[ 4s + 3c = 26 \] - Brian buys 5 sundaes and 2 cones for a total of $[/tex]29.
- This can be written as:
[tex]\[ 5s + 2c = 29 \][/tex]
2. Write the system of linear equations:
[tex]\[ \begin{cases} 4s + 3c = 26 \\ 5s + 2c = 29 \end{cases} \][/tex]
3. Solve the system of equations using the method of substitution or elimination.
Here, I will outline the steps using the elimination method:
- Multiply the first equation by 2 and the second equation by 3 to make the coefficients of [tex]\(c\)[/tex] the same:
[tex]\[ \begin{cases} 2 \times (4s + 3c) = 2 \times 26 \implies 8s + 6c = 52 \\ 3 \times (5s + 2c) = 3 \times 29 \implies 15s + 6c = 87 \end{cases} \][/tex]
- Subtract the first modified equation from the second modified equation to eliminate [tex]\(c\)[/tex]:
[tex]\[ (15s + 6c) - (8s + 6c) = 87 - 52 \\ 7s = 35 \][/tex]
- Solve for [tex]\(s\)[/tex]:
[tex]\[ s = \frac{35}{7} = 5 \][/tex]
4. Substitute [tex]\(s = 5\)[/tex] back into one of the original equations to solve for [tex]\(c\)[/tex]:
Using the first equation [tex]\(4s + 3c = 26\)[/tex]:
[tex]\[ 4(5) + 3c = 26 \\ 20 + 3c = 26 \\ 3c = 26 - 20 \\ 3c = 6 \\ c = \frac{6}{3} = 2 \][/tex]
### Conclusion:
The cost of one sundae ([tex]\(s\)[/tex]) is [tex]$\$[/tex]5[tex]$ and the cost of one cone (\(c\)) is $[/tex]\[tex]$2$[/tex].
### Step-by-Step Solution:
1. Identify the given information and formulate the equations:
- Mark buys 4 sundaes and 3 cones for a total of [tex]$26. - This can be written as: \[ 4s + 3c = 26 \] - Brian buys 5 sundaes and 2 cones for a total of $[/tex]29.
- This can be written as:
[tex]\[ 5s + 2c = 29 \][/tex]
2. Write the system of linear equations:
[tex]\[ \begin{cases} 4s + 3c = 26 \\ 5s + 2c = 29 \end{cases} \][/tex]
3. Solve the system of equations using the method of substitution or elimination.
Here, I will outline the steps using the elimination method:
- Multiply the first equation by 2 and the second equation by 3 to make the coefficients of [tex]\(c\)[/tex] the same:
[tex]\[ \begin{cases} 2 \times (4s + 3c) = 2 \times 26 \implies 8s + 6c = 52 \\ 3 \times (5s + 2c) = 3 \times 29 \implies 15s + 6c = 87 \end{cases} \][/tex]
- Subtract the first modified equation from the second modified equation to eliminate [tex]\(c\)[/tex]:
[tex]\[ (15s + 6c) - (8s + 6c) = 87 - 52 \\ 7s = 35 \][/tex]
- Solve for [tex]\(s\)[/tex]:
[tex]\[ s = \frac{35}{7} = 5 \][/tex]
4. Substitute [tex]\(s = 5\)[/tex] back into one of the original equations to solve for [tex]\(c\)[/tex]:
Using the first equation [tex]\(4s + 3c = 26\)[/tex]:
[tex]\[ 4(5) + 3c = 26 \\ 20 + 3c = 26 \\ 3c = 26 - 20 \\ 3c = 6 \\ c = \frac{6}{3} = 2 \][/tex]
### Conclusion:
The cost of one sundae ([tex]\(s\)[/tex]) is [tex]$\$[/tex]5[tex]$ and the cost of one cone (\(c\)) is $[/tex]\[tex]$2$[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.