At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To model the situation described by the quadratic equation [tex]\(y = a(x-h)^2 + k\)[/tex], we need to determine the values of [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex]. We are provided with the following information:
- The lowest point (vertex) of the cable is [tex]\(6\)[/tex] feet above the roadway and is [tex]\(90\)[/tex] feet horizontally from the left bridge support. This gives us the vertex [tex]\((h, k)\)[/tex], where [tex]\(h = 90\)[/tex] and [tex]\(k = 6\)[/tex].
- At a horizontal distance of [tex]\(30\)[/tex] feet, the height of the cable is [tex]\(15\)[/tex] feet above the roadway.
Given these values, the vertex form of our equation is:
[tex]\[ y = a(x - 90)^2 + 6 \][/tex]
Next, we use the information that at [tex]\(x = 30\)[/tex], [tex]\(y = 15\)[/tex] to find the value of [tex]\(a\)[/tex]. Substitute [tex]\(x = 30\)[/tex] and [tex]\(y = 15\)[/tex] into the equation:
[tex]\[ 15 = a(30 - 90)^2 + 6 \][/tex]
This simplifies to:
[tex]\[ 15 = a(-60)^2 + 6 \][/tex]
[tex]\[ 15 = 3600a + 6 \][/tex]
To isolate [tex]\(a\)[/tex], subtract [tex]\(6\)[/tex] from both sides:
[tex]\[ 9 = 3600a \][/tex]
Finally, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{9}{3600} = \frac{1}{400} \][/tex]
So, the quadratic equation that models the situation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Therefore, the correctly modeled quadratic equation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
- The lowest point (vertex) of the cable is [tex]\(6\)[/tex] feet above the roadway and is [tex]\(90\)[/tex] feet horizontally from the left bridge support. This gives us the vertex [tex]\((h, k)\)[/tex], where [tex]\(h = 90\)[/tex] and [tex]\(k = 6\)[/tex].
- At a horizontal distance of [tex]\(30\)[/tex] feet, the height of the cable is [tex]\(15\)[/tex] feet above the roadway.
Given these values, the vertex form of our equation is:
[tex]\[ y = a(x - 90)^2 + 6 \][/tex]
Next, we use the information that at [tex]\(x = 30\)[/tex], [tex]\(y = 15\)[/tex] to find the value of [tex]\(a\)[/tex]. Substitute [tex]\(x = 30\)[/tex] and [tex]\(y = 15\)[/tex] into the equation:
[tex]\[ 15 = a(30 - 90)^2 + 6 \][/tex]
This simplifies to:
[tex]\[ 15 = a(-60)^2 + 6 \][/tex]
[tex]\[ 15 = 3600a + 6 \][/tex]
To isolate [tex]\(a\)[/tex], subtract [tex]\(6\)[/tex] from both sides:
[tex]\[ 9 = 3600a \][/tex]
Finally, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{9}{3600} = \frac{1}{400} \][/tex]
So, the quadratic equation that models the situation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Therefore, the correctly modeled quadratic equation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.