Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To model the situation described by the quadratic equation [tex]\(y = a(x-h)^2 + k\)[/tex], we need to determine the values of [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex]. We are provided with the following information:
- The lowest point (vertex) of the cable is [tex]\(6\)[/tex] feet above the roadway and is [tex]\(90\)[/tex] feet horizontally from the left bridge support. This gives us the vertex [tex]\((h, k)\)[/tex], where [tex]\(h = 90\)[/tex] and [tex]\(k = 6\)[/tex].
- At a horizontal distance of [tex]\(30\)[/tex] feet, the height of the cable is [tex]\(15\)[/tex] feet above the roadway.
Given these values, the vertex form of our equation is:
[tex]\[ y = a(x - 90)^2 + 6 \][/tex]
Next, we use the information that at [tex]\(x = 30\)[/tex], [tex]\(y = 15\)[/tex] to find the value of [tex]\(a\)[/tex]. Substitute [tex]\(x = 30\)[/tex] and [tex]\(y = 15\)[/tex] into the equation:
[tex]\[ 15 = a(30 - 90)^2 + 6 \][/tex]
This simplifies to:
[tex]\[ 15 = a(-60)^2 + 6 \][/tex]
[tex]\[ 15 = 3600a + 6 \][/tex]
To isolate [tex]\(a\)[/tex], subtract [tex]\(6\)[/tex] from both sides:
[tex]\[ 9 = 3600a \][/tex]
Finally, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{9}{3600} = \frac{1}{400} \][/tex]
So, the quadratic equation that models the situation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Therefore, the correctly modeled quadratic equation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
- The lowest point (vertex) of the cable is [tex]\(6\)[/tex] feet above the roadway and is [tex]\(90\)[/tex] feet horizontally from the left bridge support. This gives us the vertex [tex]\((h, k)\)[/tex], where [tex]\(h = 90\)[/tex] and [tex]\(k = 6\)[/tex].
- At a horizontal distance of [tex]\(30\)[/tex] feet, the height of the cable is [tex]\(15\)[/tex] feet above the roadway.
Given these values, the vertex form of our equation is:
[tex]\[ y = a(x - 90)^2 + 6 \][/tex]
Next, we use the information that at [tex]\(x = 30\)[/tex], [tex]\(y = 15\)[/tex] to find the value of [tex]\(a\)[/tex]. Substitute [tex]\(x = 30\)[/tex] and [tex]\(y = 15\)[/tex] into the equation:
[tex]\[ 15 = a(30 - 90)^2 + 6 \][/tex]
This simplifies to:
[tex]\[ 15 = a(-60)^2 + 6 \][/tex]
[tex]\[ 15 = 3600a + 6 \][/tex]
To isolate [tex]\(a\)[/tex], subtract [tex]\(6\)[/tex] from both sides:
[tex]\[ 9 = 3600a \][/tex]
Finally, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{9}{3600} = \frac{1}{400} \][/tex]
So, the quadratic equation that models the situation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Therefore, the correctly modeled quadratic equation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.