Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To model the situation described by the quadratic equation [tex]\(y = a(x-h)^2 + k\)[/tex], we need to determine the values of [tex]\(a\)[/tex], [tex]\(h\)[/tex], and [tex]\(k\)[/tex]. We are provided with the following information:
- The lowest point (vertex) of the cable is [tex]\(6\)[/tex] feet above the roadway and is [tex]\(90\)[/tex] feet horizontally from the left bridge support. This gives us the vertex [tex]\((h, k)\)[/tex], where [tex]\(h = 90\)[/tex] and [tex]\(k = 6\)[/tex].
- At a horizontal distance of [tex]\(30\)[/tex] feet, the height of the cable is [tex]\(15\)[/tex] feet above the roadway.
Given these values, the vertex form of our equation is:
[tex]\[ y = a(x - 90)^2 + 6 \][/tex]
Next, we use the information that at [tex]\(x = 30\)[/tex], [tex]\(y = 15\)[/tex] to find the value of [tex]\(a\)[/tex]. Substitute [tex]\(x = 30\)[/tex] and [tex]\(y = 15\)[/tex] into the equation:
[tex]\[ 15 = a(30 - 90)^2 + 6 \][/tex]
This simplifies to:
[tex]\[ 15 = a(-60)^2 + 6 \][/tex]
[tex]\[ 15 = 3600a + 6 \][/tex]
To isolate [tex]\(a\)[/tex], subtract [tex]\(6\)[/tex] from both sides:
[tex]\[ 9 = 3600a \][/tex]
Finally, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{9}{3600} = \frac{1}{400} \][/tex]
So, the quadratic equation that models the situation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Therefore, the correctly modeled quadratic equation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
- The lowest point (vertex) of the cable is [tex]\(6\)[/tex] feet above the roadway and is [tex]\(90\)[/tex] feet horizontally from the left bridge support. This gives us the vertex [tex]\((h, k)\)[/tex], where [tex]\(h = 90\)[/tex] and [tex]\(k = 6\)[/tex].
- At a horizontal distance of [tex]\(30\)[/tex] feet, the height of the cable is [tex]\(15\)[/tex] feet above the roadway.
Given these values, the vertex form of our equation is:
[tex]\[ y = a(x - 90)^2 + 6 \][/tex]
Next, we use the information that at [tex]\(x = 30\)[/tex], [tex]\(y = 15\)[/tex] to find the value of [tex]\(a\)[/tex]. Substitute [tex]\(x = 30\)[/tex] and [tex]\(y = 15\)[/tex] into the equation:
[tex]\[ 15 = a(30 - 90)^2 + 6 \][/tex]
This simplifies to:
[tex]\[ 15 = a(-60)^2 + 6 \][/tex]
[tex]\[ 15 = 3600a + 6 \][/tex]
To isolate [tex]\(a\)[/tex], subtract [tex]\(6\)[/tex] from both sides:
[tex]\[ 9 = 3600a \][/tex]
Finally, solve for [tex]\(a\)[/tex]:
[tex]\[ a = \frac{9}{3600} = \frac{1}{400} \][/tex]
So, the quadratic equation that models the situation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Therefore, the correctly modeled quadratic equation is:
[tex]\[ y = \frac{1}{400}(x - 90)^2 + 6 \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.