Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Experience the convenience of getting reliable answers to your questions from a vast network of knowledgeable experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-6 & 17 \\
\hline
-2 & 13 \\
\hline
2 & 9 \\
\hline
6 & 5 \\
\hline
10 & 1 \\
\hline
\end{tabular}

[tex]$\{(-4,2), (-2,1), (-1,3), (-1,4), (0,5), (2,5)\}$[/tex]

\begin{tabular}{|c|c|}
\hline
[tex]$x$[/tex] & [tex]$y$[/tex] \\
\hline
-3 & 4 \\
\hline
0 & 2 \\
\hline
0 & 4 \\
\hline
3 & 8 \\
\hline
4 & 7 \\
\hline
\end{tabular}

[tex]$y = -4x^2 + 45x + 9$[/tex]


Sagot :

Alright, let’s work through the solution step-by-step:

The problem at hand is to solve the equation [tex]\(4(18 - 3k) = 9(k + 1)\)[/tex].

1. Distribute the constants on both sides:
- Start by distributing the 4 on the left side:
[tex]\[ 4(18 - 3k) = 4 \cdot 18 - 4 \cdot 3k = 72 - 12k \][/tex]
- Next, distribute the 9 on the right side:
[tex]\[ 9(k + 1) = 9k + 9 \][/tex]

2. Set the left side equal to the right side:
[tex]\[ 72 - 12k = 9k + 9 \][/tex]

3. Combine like terms:
- To isolate the variable [tex]\(k\)[/tex], we move all [tex]\(k\)[/tex]-terms to one side and constants to the other:
[tex]\[ 72 - 9 = 9k + 12k \][/tex]
- Simplify the equation:
[tex]\[ 63 = 21k \][/tex]

4. Solve for [tex]\(k\)[/tex]:
- Divide both sides by 21 to get [tex]\(k\)[/tex]:
[tex]\[ k = \frac{63}{21} \][/tex]
- Simplify the fraction:
[tex]\[ k = 3 \][/tex]

Therefore, the solution to the equation [tex]\(4(18 - 3k) = 9(k + 1)\)[/tex] is [tex]\(k = 3\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.