Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine the end behavior of the polynomial function [tex]\( y = 7x^{12} - 3x^8 - 9x^4 \)[/tex], we need to focus on the highest degree term because it will dominate the behavior of the polynomial as [tex]\( x \)[/tex] approaches [tex]\(\pm\infty\)[/tex].
1. Identify the Leading Term:
The given polynomial is [tex]\( y = 7x^{12} - 3x^8 - 9x^4 \)[/tex]. The term with the highest degree is [tex]\( 7x^{12} \)[/tex].
2. Determine the Leading Term's Degree and Coefficient:
- The degree of the leading term [tex]\( 7x^{12} \)[/tex] is 12.
- The leading coefficient of [tex]\( 7x^{12} \)[/tex] is 7, which is positive.
3. Analyze the Leading Term:
- Since the degree is 12 (which is even), the behavior of the graph at both ends (as [tex]\( x \to \pm\infty \)[/tex]) will be the same.
- A positive leading coefficient (7) indicates that as [tex]\( x \to \pm\infty \)[/tex], the value of [tex]\( y \)[/tex] will also tend to positive infinity because an even-powered term with a positive coefficient grows positively in both directions.
4. End Behavior:
- As [tex]\( x \to -\infty \)[/tex], the leading term [tex]\( 7x^{12} \)[/tex] (and hence the polynomial) will go to [tex]\( +\infty \)[/tex].
- As [tex]\( x \to \infty \)[/tex], the leading term [tex]\( 7x^{12} \)[/tex] (and hence the polynomial) will also go to [tex]\( +\infty \)[/tex].
Therefore, the end behavior of the polynomial [tex]\( y = 7x^{12} - 3x^8 - 9x^4 \)[/tex] is:
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \infty \)[/tex].
So, the correct choice is:
- As [tex]\( x \rightarrow -\infty, y \rightarrow \infty \)[/tex] and as [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].
Hence, the answer is:
[tex]\[ \boxed{4} \][/tex]
1. Identify the Leading Term:
The given polynomial is [tex]\( y = 7x^{12} - 3x^8 - 9x^4 \)[/tex]. The term with the highest degree is [tex]\( 7x^{12} \)[/tex].
2. Determine the Leading Term's Degree and Coefficient:
- The degree of the leading term [tex]\( 7x^{12} \)[/tex] is 12.
- The leading coefficient of [tex]\( 7x^{12} \)[/tex] is 7, which is positive.
3. Analyze the Leading Term:
- Since the degree is 12 (which is even), the behavior of the graph at both ends (as [tex]\( x \to \pm\infty \)[/tex]) will be the same.
- A positive leading coefficient (7) indicates that as [tex]\( x \to \pm\infty \)[/tex], the value of [tex]\( y \)[/tex] will also tend to positive infinity because an even-powered term with a positive coefficient grows positively in both directions.
4. End Behavior:
- As [tex]\( x \to -\infty \)[/tex], the leading term [tex]\( 7x^{12} \)[/tex] (and hence the polynomial) will go to [tex]\( +\infty \)[/tex].
- As [tex]\( x \to \infty \)[/tex], the leading term [tex]\( 7x^{12} \)[/tex] (and hence the polynomial) will also go to [tex]\( +\infty \)[/tex].
Therefore, the end behavior of the polynomial [tex]\( y = 7x^{12} - 3x^8 - 9x^4 \)[/tex] is:
- As [tex]\( x \rightarrow -\infty \)[/tex], [tex]\( y \rightarrow \infty \)[/tex].
- As [tex]\( x \rightarrow \infty \)[/tex], [tex]\( y \rightarrow \infty \)[/tex].
So, the correct choice is:
- As [tex]\( x \rightarrow -\infty, y \rightarrow \infty \)[/tex] and as [tex]\( x \rightarrow \infty, y \rightarrow \infty \)[/tex].
Hence, the answer is:
[tex]\[ \boxed{4} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.