Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

What is the sum of the measures of the interior angles of a decagon? (Note: a decagon is a polygon with 10 sides.)

A. 900 degrees
B. 1440 degrees
C. 720 degrees
D. 540 degrees


Sagot :

To find the sum of the measures of the interior angles of a decagon (a polygon with 10 sides), you can use the following formula:

Formula:
[tex]\[ \text{Sum of interior angles} = (n - 2) \times 180^\circ \][/tex]
where [tex]\( n \)[/tex] is the number of sides of the polygon.

For a decagon:
1. Substitute [tex]\( n = 10 \)[/tex] into the formula:
[tex]\[ \text{Sum of interior angles} = (10 - 2) \times 180^\circ \][/tex]

2. Simplify the expression inside the parentheses:
[tex]\[ 10 - 2 = 8 \][/tex]

3. Multiply the result by 180 degrees:
[tex]\[ 8 \times 180^\circ = 1440^\circ \][/tex]

Thus, the sum of the measures of the interior angles of a decagon is [tex]\( \boldsymbol{1440^\circ} \)[/tex].

So, the correct answer is:
1440 degrees.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.