At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the initial temperature of the solid object when it was dropped into the pond, we will follow a series of steps based on the given information.
### Given:
- Time, [tex]\( t = 4 \)[/tex] minutes
- Temperature after 4 minutes, [tex]\( f(4) = 35 \)[/tex] degrees Celsius
- Constant [tex]\( k = 0.0399 \)[/tex]
- Temperature of the pond [tex]\( = 20 \)[/tex] degrees Celsius
### Equation:
The temperature of the object as a function of time is given by:
[tex]\[ f(t) = C e^{-kt} + 20 \][/tex]
where [tex]\( C \)[/tex] is the constant we need to determine based on initial conditions.
### Step-by-Step Solution:
1. Substitute the given values into the equation to determine [tex]\( C \)[/tex]:
[tex]\[ f(4) = 35 \][/tex]
[tex]\[ 35 = C e^{-0.0399 \times 4} + 20 \][/tex]
2. Evaluate the exponent:
[tex]\[ 35 = C e^{-0.1596} + 20 \][/tex]
3. Isolate [tex]\( C \)[/tex]:
[tex]\[ 35 - 20 = C e^{-0.1596} \][/tex]
[tex]\[ 15 = C e^{-0.1596} \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{15}{e^{-0.1596}} \][/tex]
5. Evaluate the denominator:
[tex]\[ C = 15 \times e^{0.1596} \][/tex]
6. Now, to find the initial temperature of the object, substitute [tex]\( t = 0 \)[/tex] into the original equation:
[tex]\[ f(0) = C e^{-0.0399 \times 0} + 20 \][/tex]
[tex]\[ f(0) = C \times 1 + 20 \][/tex]
[tex]\[ f(0) = C + 20 \][/tex]
7. With [tex]\( C \)[/tex] evaluated from previous steps:
[tex]\[ f(0) = 15 \times e^{0.1596} + 20 \][/tex]
Upon plugging in the values and solving, the initial temperature of the object is found to be:
[tex]\[ \boxed{37.6} \][/tex]
### Given:
- Time, [tex]\( t = 4 \)[/tex] minutes
- Temperature after 4 minutes, [tex]\( f(4) = 35 \)[/tex] degrees Celsius
- Constant [tex]\( k = 0.0399 \)[/tex]
- Temperature of the pond [tex]\( = 20 \)[/tex] degrees Celsius
### Equation:
The temperature of the object as a function of time is given by:
[tex]\[ f(t) = C e^{-kt} + 20 \][/tex]
where [tex]\( C \)[/tex] is the constant we need to determine based on initial conditions.
### Step-by-Step Solution:
1. Substitute the given values into the equation to determine [tex]\( C \)[/tex]:
[tex]\[ f(4) = 35 \][/tex]
[tex]\[ 35 = C e^{-0.0399 \times 4} + 20 \][/tex]
2. Evaluate the exponent:
[tex]\[ 35 = C e^{-0.1596} + 20 \][/tex]
3. Isolate [tex]\( C \)[/tex]:
[tex]\[ 35 - 20 = C e^{-0.1596} \][/tex]
[tex]\[ 15 = C e^{-0.1596} \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{15}{e^{-0.1596}} \][/tex]
5. Evaluate the denominator:
[tex]\[ C = 15 \times e^{0.1596} \][/tex]
6. Now, to find the initial temperature of the object, substitute [tex]\( t = 0 \)[/tex] into the original equation:
[tex]\[ f(0) = C e^{-0.0399 \times 0} + 20 \][/tex]
[tex]\[ f(0) = C \times 1 + 20 \][/tex]
[tex]\[ f(0) = C + 20 \][/tex]
7. With [tex]\( C \)[/tex] evaluated from previous steps:
[tex]\[ f(0) = 15 \times e^{0.1596} + 20 \][/tex]
Upon plugging in the values and solving, the initial temperature of the object is found to be:
[tex]\[ \boxed{37.6} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.