At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To find the initial temperature of the solid object when it was dropped into the pond, we will follow a series of steps based on the given information.
### Given:
- Time, [tex]\( t = 4 \)[/tex] minutes
- Temperature after 4 minutes, [tex]\( f(4) = 35 \)[/tex] degrees Celsius
- Constant [tex]\( k = 0.0399 \)[/tex]
- Temperature of the pond [tex]\( = 20 \)[/tex] degrees Celsius
### Equation:
The temperature of the object as a function of time is given by:
[tex]\[ f(t) = C e^{-kt} + 20 \][/tex]
where [tex]\( C \)[/tex] is the constant we need to determine based on initial conditions.
### Step-by-Step Solution:
1. Substitute the given values into the equation to determine [tex]\( C \)[/tex]:
[tex]\[ f(4) = 35 \][/tex]
[tex]\[ 35 = C e^{-0.0399 \times 4} + 20 \][/tex]
2. Evaluate the exponent:
[tex]\[ 35 = C e^{-0.1596} + 20 \][/tex]
3. Isolate [tex]\( C \)[/tex]:
[tex]\[ 35 - 20 = C e^{-0.1596} \][/tex]
[tex]\[ 15 = C e^{-0.1596} \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{15}{e^{-0.1596}} \][/tex]
5. Evaluate the denominator:
[tex]\[ C = 15 \times e^{0.1596} \][/tex]
6. Now, to find the initial temperature of the object, substitute [tex]\( t = 0 \)[/tex] into the original equation:
[tex]\[ f(0) = C e^{-0.0399 \times 0} + 20 \][/tex]
[tex]\[ f(0) = C \times 1 + 20 \][/tex]
[tex]\[ f(0) = C + 20 \][/tex]
7. With [tex]\( C \)[/tex] evaluated from previous steps:
[tex]\[ f(0) = 15 \times e^{0.1596} + 20 \][/tex]
Upon plugging in the values and solving, the initial temperature of the object is found to be:
[tex]\[ \boxed{37.6} \][/tex]
### Given:
- Time, [tex]\( t = 4 \)[/tex] minutes
- Temperature after 4 minutes, [tex]\( f(4) = 35 \)[/tex] degrees Celsius
- Constant [tex]\( k = 0.0399 \)[/tex]
- Temperature of the pond [tex]\( = 20 \)[/tex] degrees Celsius
### Equation:
The temperature of the object as a function of time is given by:
[tex]\[ f(t) = C e^{-kt} + 20 \][/tex]
where [tex]\( C \)[/tex] is the constant we need to determine based on initial conditions.
### Step-by-Step Solution:
1. Substitute the given values into the equation to determine [tex]\( C \)[/tex]:
[tex]\[ f(4) = 35 \][/tex]
[tex]\[ 35 = C e^{-0.0399 \times 4} + 20 \][/tex]
2. Evaluate the exponent:
[tex]\[ 35 = C e^{-0.1596} + 20 \][/tex]
3. Isolate [tex]\( C \)[/tex]:
[tex]\[ 35 - 20 = C e^{-0.1596} \][/tex]
[tex]\[ 15 = C e^{-0.1596} \][/tex]
4. Solve for [tex]\( C \)[/tex]:
[tex]\[ C = \frac{15}{e^{-0.1596}} \][/tex]
5. Evaluate the denominator:
[tex]\[ C = 15 \times e^{0.1596} \][/tex]
6. Now, to find the initial temperature of the object, substitute [tex]\( t = 0 \)[/tex] into the original equation:
[tex]\[ f(0) = C e^{-0.0399 \times 0} + 20 \][/tex]
[tex]\[ f(0) = C \times 1 + 20 \][/tex]
[tex]\[ f(0) = C + 20 \][/tex]
7. With [tex]\( C \)[/tex] evaluated from previous steps:
[tex]\[ f(0) = 15 \times e^{0.1596} + 20 \][/tex]
Upon plugging in the values and solving, the initial temperature of the object is found to be:
[tex]\[ \boxed{37.6} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.