Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To graph the cost function [tex]\( c(x) = 2x + 2.00 \)[/tex], follow these steps:
1. Understand the Function:
The cost function [tex]\( c(x) = 2x + 2.00 \)[/tex] is a linear function where:
- The slope (rate of change) is 2, meaning the cost increases by [tex]$2 for every additional minute. - The y-intercept is $[/tex]2.00, meaning if the number of minutes ([tex]\( x \)[/tex]) is 0, the initial cost is [tex]$2.00. 2. Create a Table of Values: To plot points on the graph, choose a few values for \( x \) (minutes) and calculate the corresponding \( c(x) \) (cost): \[ \begin{array}{c|c} x & c(x) \\ \hline 0 & 2\cdot 0 + 2.00 = 2.00 \\ 1 & 2\cdot 1 + 2.00 = 4.00 \\ 2 & 2\cdot 2 + 2.00 = 6.00 \\ 3 & 2\cdot 3 + 2.00 = 8.00 \\ \end{array} \] 3. Plot the Points: Plot these points on graph paper or a coordinate plane: - (0, 2.00) - (1, 4.00) - (2, 6.00) - (3, 8.00) 4. Draw the Line: Since \( c(x) = 2x + 2.00 \) is a linear function, you can draw a straight line through these points. 5. Label Axes: - The horizontal axis (x-axis) represents the number of minutes (\( x \)). - The vertical axis (y-axis) represents the total cost in dollars (\( c(x) \)). 6. Check the Slope and Intercept: - The y-intercept is at $[/tex]2.00. This point confirms the initial cost when [tex]\( x = 0 \)[/tex].
- The slope is 2, indicating the line should rise 2 units vertically for each 1 unit it moves horizontally.
Summary:
- Correct graph would show a straight line starting from the y-intercept at (0, 2.00).
- The line should have a slope of 2, meaning for each additional minute, the cost increases by [tex]$2. - The x-axis should be labeled "Number of Minutes (\( x \))". - The y-axis should be labeled "Cost ($[/tex]c(x)$)".
1. Understand the Function:
The cost function [tex]\( c(x) = 2x + 2.00 \)[/tex] is a linear function where:
- The slope (rate of change) is 2, meaning the cost increases by [tex]$2 for every additional minute. - The y-intercept is $[/tex]2.00, meaning if the number of minutes ([tex]\( x \)[/tex]) is 0, the initial cost is [tex]$2.00. 2. Create a Table of Values: To plot points on the graph, choose a few values for \( x \) (minutes) and calculate the corresponding \( c(x) \) (cost): \[ \begin{array}{c|c} x & c(x) \\ \hline 0 & 2\cdot 0 + 2.00 = 2.00 \\ 1 & 2\cdot 1 + 2.00 = 4.00 \\ 2 & 2\cdot 2 + 2.00 = 6.00 \\ 3 & 2\cdot 3 + 2.00 = 8.00 \\ \end{array} \] 3. Plot the Points: Plot these points on graph paper or a coordinate plane: - (0, 2.00) - (1, 4.00) - (2, 6.00) - (3, 8.00) 4. Draw the Line: Since \( c(x) = 2x + 2.00 \) is a linear function, you can draw a straight line through these points. 5. Label Axes: - The horizontal axis (x-axis) represents the number of minutes (\( x \)). - The vertical axis (y-axis) represents the total cost in dollars (\( c(x) \)). 6. Check the Slope and Intercept: - The y-intercept is at $[/tex]2.00. This point confirms the initial cost when [tex]\( x = 0 \)[/tex].
- The slope is 2, indicating the line should rise 2 units vertically for each 1 unit it moves horizontally.
Summary:
- Correct graph would show a straight line starting from the y-intercept at (0, 2.00).
- The line should have a slope of 2, meaning for each additional minute, the cost increases by [tex]$2. - The x-axis should be labeled "Number of Minutes (\( x \))". - The y-axis should be labeled "Cost ($[/tex]c(x)$)".
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.