Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the possible values of [tex]\( n \)[/tex] for the third side of a triangle given side lengths of [tex]\( 20 \)[/tex] cm and [tex]\( 5 \)[/tex] cm, we use the triangle inequality theorem. The theorem states:
1. The sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
2. This requirement must be satisfied for all three combinations of the sides.
Given the sides [tex]\( a = 20 \)[/tex] cm, [tex]\( b = 5 \)[/tex] cm, and [tex]\( c = n \)[/tex] cm, we can derive the inequalities as follows:
1. [tex]\( a + b > c \)[/tex]
2. [tex]\( a + c > b \)[/tex]
3. [tex]\( b + c > a \)[/tex]
Substituting the given side lengths into the inequalities:
1. [tex]\( 20 + 5 > n \)[/tex]
[tex]\[ 25 > n \][/tex]
[tex]\[ n < 25 \][/tex]
2. [tex]\( 20 + n > 5 \)[/tex]
[tex]\[ n > -15 \][/tex]
Since [tex]\( n \)[/tex] must be a positive length, we disregard [tex]\( n > -15 \)[/tex] as it is always true for any positive number.
3. [tex]\( 5 + n > 20 \)[/tex]
[tex]\[ n > 15 \][/tex]
Combining these inequalities gives:
[tex]\[ 15 < n < 25 \][/tex]
Therefore, the correct range for the side length [tex]\( n \)[/tex] is [tex]\( 15 < n < 25 \)[/tex].
From the given multiple-choice options, the correct answer is:
[tex]\[ 15 < n < 25 \][/tex]
1. The sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
2. This requirement must be satisfied for all three combinations of the sides.
Given the sides [tex]\( a = 20 \)[/tex] cm, [tex]\( b = 5 \)[/tex] cm, and [tex]\( c = n \)[/tex] cm, we can derive the inequalities as follows:
1. [tex]\( a + b > c \)[/tex]
2. [tex]\( a + c > b \)[/tex]
3. [tex]\( b + c > a \)[/tex]
Substituting the given side lengths into the inequalities:
1. [tex]\( 20 + 5 > n \)[/tex]
[tex]\[ 25 > n \][/tex]
[tex]\[ n < 25 \][/tex]
2. [tex]\( 20 + n > 5 \)[/tex]
[tex]\[ n > -15 \][/tex]
Since [tex]\( n \)[/tex] must be a positive length, we disregard [tex]\( n > -15 \)[/tex] as it is always true for any positive number.
3. [tex]\( 5 + n > 20 \)[/tex]
[tex]\[ n > 15 \][/tex]
Combining these inequalities gives:
[tex]\[ 15 < n < 25 \][/tex]
Therefore, the correct range for the side length [tex]\( n \)[/tex] is [tex]\( 15 < n < 25 \)[/tex].
From the given multiple-choice options, the correct answer is:
[tex]\[ 15 < n < 25 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.