Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the correct conclusion from the two-sample t-test conducted to compare the eating habits (total calories consumed) of students from two universities, follow these steps:
1. State the Null and Alternative Hypotheses:
- Null Hypothesis (H0): μ1 = μ2, indicating that the mean calorie consumption for students from both universities is the same.
- Alternative Hypothesis (H1): μ1 < μ2, indicating that the mean calorie consumption for students from University 1 (Sample 1) is less than that for University 2 (Sample 2).
2. Given Information:
- Sample 1: n1 = 60, mean1 = 985, sd1 = 8.7
- Sample 2: n2 = 55, mean2 = 1300, sd2 = 9.6
- Test statistic (t) = 3.2
- P-value = 0.0009
3. Significance Level:
- Commonly used significance level (α) = 0.05
4. Decision Rule:
- If the P-value is less than the significance level (α), we reject the null hypothesis.
- If the P-value is greater than or equal to the significance level, we fail to reject the null hypothesis.
5. Compare the P-value with the Significance Level:
- P-value = 0.0009
- Significance level (α) = 0.05
Since 0.0009 < 0.05, we reject the null hypothesis.
6. Conclusion:
Rejecting the null hypothesis provides sufficient evidence to support the alternative hypothesis.
Therefore, the correct conclusion is:
- The samples provide significant evidence that students from Sample 1 are eating less than students from Sample 2.
1. State the Null and Alternative Hypotheses:
- Null Hypothesis (H0): μ1 = μ2, indicating that the mean calorie consumption for students from both universities is the same.
- Alternative Hypothesis (H1): μ1 < μ2, indicating that the mean calorie consumption for students from University 1 (Sample 1) is less than that for University 2 (Sample 2).
2. Given Information:
- Sample 1: n1 = 60, mean1 = 985, sd1 = 8.7
- Sample 2: n2 = 55, mean2 = 1300, sd2 = 9.6
- Test statistic (t) = 3.2
- P-value = 0.0009
3. Significance Level:
- Commonly used significance level (α) = 0.05
4. Decision Rule:
- If the P-value is less than the significance level (α), we reject the null hypothesis.
- If the P-value is greater than or equal to the significance level, we fail to reject the null hypothesis.
5. Compare the P-value with the Significance Level:
- P-value = 0.0009
- Significance level (α) = 0.05
Since 0.0009 < 0.05, we reject the null hypothesis.
6. Conclusion:
Rejecting the null hypothesis provides sufficient evidence to support the alternative hypothesis.
Therefore, the correct conclusion is:
- The samples provide significant evidence that students from Sample 1 are eating less than students from Sample 2.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.