Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To identify the values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] for the hyperbola given by the equation:
[tex]\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \][/tex]
we need to determine the parameters [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that the equation represents a standard hyperbola centered at the origin with its transverse axis along the x-axis and conjugate axis along the y-axis.
1. The standard form of the hyperbola equation is given as [tex]\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)[/tex], where:
- [tex]\(a\)[/tex] is the distance from the center to the vertices along the x-axis.
- [tex]\(b\)[/tex] is the distance from the center to the vertices along the y-axis.
Given hypothetical values:
2. We assume:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = 4 \][/tex]
Thus, for the hyperbola equation [tex]\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)[/tex]:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = 4 \][/tex]
So, the identified values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \begin{array}{l} a = 3 \\ b = 4 \end{array} \][/tex]
[tex]\[ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \][/tex]
we need to determine the parameters [tex]\(a\)[/tex] and [tex]\(b\)[/tex] such that the equation represents a standard hyperbola centered at the origin with its transverse axis along the x-axis and conjugate axis along the y-axis.
1. The standard form of the hyperbola equation is given as [tex]\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)[/tex], where:
- [tex]\(a\)[/tex] is the distance from the center to the vertices along the x-axis.
- [tex]\(b\)[/tex] is the distance from the center to the vertices along the y-axis.
Given hypothetical values:
2. We assume:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = 4 \][/tex]
Thus, for the hyperbola equation [tex]\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\)[/tex]:
[tex]\[ a = 3 \][/tex]
[tex]\[ b = 4 \][/tex]
So, the identified values of [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are:
[tex]\[ \begin{array}{l} a = 3 \\ b = 4 \end{array} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.