Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

What are the [tex]\( x \)[/tex]-intercepts of the graph of the function [tex]\( f(x) = x^2 + 5x - 36 \)[/tex]?

A. [tex]\((-4,0)\)[/tex] and [tex]\((9,0)\)[/tex]
B. [tex]\((4,0)\)[/tex] and [tex]\((-9,0)\)[/tex]
C. [tex]\((-3,0)\)[/tex] and [tex]\((12,0)\)[/tex]
D. [tex]\((3,0)\)[/tex] and [tex]\((-12,0)\)[/tex]

Sagot :

To find the [tex]\( x \)[/tex]-intercepts of the function [tex]\( f(x) = x^2 + 5x - 36 \)[/tex], we need to solve the equation [tex]\( f(x) = 0 \)[/tex] or [tex]\( x^2 + 5x - 36 = 0 \)[/tex].

1. Identify coefficients:
The given quadratic equation is [tex]\( x^2 + 5x - 36 = 0 \)[/tex]. Here, the coefficients are:
[tex]\[ a = 1, \quad b = 5, \quad c = -36 \][/tex]

2. Calculate the discriminant:
The discriminant of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( c \)[/tex]:
[tex]\[ \Delta = 5^2 - 4(1)(-36) = 25 + 144 = 169 \][/tex]

3. Find the roots using the quadratic formula:
The quadratic formula to find the roots of [tex]\( ax^2 + bx + c = 0 \)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex], [tex]\( b \)[/tex], and [tex]\( \Delta \)[/tex]:
[tex]\[ x = \frac{-5 \pm \sqrt{169}}{2 \cdot 1} = \frac{-5 \pm 13}{2} \][/tex]

4. Calculate the two potential solutions:
[tex]\[ x_1 = \frac{-5 + 13}{2} = \frac{8}{2} = 4 \][/tex]
[tex]\[ x_2 = \frac{-5 - 13}{2} = \frac{-18}{2} = -9 \][/tex]

Thus, the [tex]\( x \)[/tex]-intercepts of the graph [tex]\( f(x) = x^2 + 5x - 36 \)[/tex] are the points where the graph intersects the [tex]\( x \)[/tex]-axis, which are [tex]\( (4, 0) \)[/tex] and [tex]\( (-9, 0) \)[/tex].

Therefore, the correct pair is:
[tex]\[ (4, 0) \text{ and } (-9, 0) \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.