Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To solve this problem, follow these steps:
1. Determine the slope of the given line:
The equation of the given line is [tex]\( 3y + 4x = 7 \)[/tex]. We can rewrite this in the slope-intercept form [tex]\( y = mx + b \)[/tex].
[tex]\[ 3y + 4x = 7 \implies 3y = -4x + 7 \implies y = -\frac{4}{3}x + \frac{7}{3} \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{4}{3} \)[/tex].
2. Find the slope of the perpendicular line:
The slope of the line that is perpendicular to another line is the negative reciprocal of the original slope. Thus, the slope of the perpendicular line is:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{-\frac{4}{3}} = \frac{3}{4} \][/tex]
3. Use the point-slope form to find the equation of the perpendicular line:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
Given point [tex]\((4, -3)\)[/tex] and slope [tex]\( \frac{3}{4} \)[/tex]:
[tex]\[ y - (-3) = \frac{3}{4}(x - 4) \implies y + 3 = \frac{3}{4}(x - 4) \][/tex]
4. Simplify the equation:
Distribute the slope on the right-hand side:
[tex]\[ y + 3 = \frac{3}{4}x - \frac{3}{4} \cdot 4 \][/tex]
[tex]\[ y + 3 = \frac{3}{4}x - 3 \][/tex]
Subtract 3 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{3}{4}x - 3 - 3 \][/tex]
[tex]\[ y = \frac{3}{4}x - 6 \][/tex]
Thus, the equation of the line passing through [tex]\((4, -3)\)[/tex] and perpendicular to the line [tex]\( 3y + 4x = 7 \)[/tex] is:
[tex]\[ y = \frac{3}{4}x - 6 \][/tex]
1. Determine the slope of the given line:
The equation of the given line is [tex]\( 3y + 4x = 7 \)[/tex]. We can rewrite this in the slope-intercept form [tex]\( y = mx + b \)[/tex].
[tex]\[ 3y + 4x = 7 \implies 3y = -4x + 7 \implies y = -\frac{4}{3}x + \frac{7}{3} \][/tex]
Therefore, the slope [tex]\( m \)[/tex] of the given line is [tex]\( -\frac{4}{3} \)[/tex].
2. Find the slope of the perpendicular line:
The slope of the line that is perpendicular to another line is the negative reciprocal of the original slope. Thus, the slope of the perpendicular line is:
[tex]\[ m_{\text{perpendicular}} = -\frac{1}{-\frac{4}{3}} = \frac{3}{4} \][/tex]
3. Use the point-slope form to find the equation of the perpendicular line:
The point-slope form of a line's equation is [tex]\( y - y_1 = m(x - x_1) \)[/tex], where [tex]\( (x_1, y_1) \)[/tex] is a point on the line and [tex]\( m \)[/tex] is the slope.
Given point [tex]\((4, -3)\)[/tex] and slope [tex]\( \frac{3}{4} \)[/tex]:
[tex]\[ y - (-3) = \frac{3}{4}(x - 4) \implies y + 3 = \frac{3}{4}(x - 4) \][/tex]
4. Simplify the equation:
Distribute the slope on the right-hand side:
[tex]\[ y + 3 = \frac{3}{4}x - \frac{3}{4} \cdot 4 \][/tex]
[tex]\[ y + 3 = \frac{3}{4}x - 3 \][/tex]
Subtract 3 from both sides to isolate [tex]\( y \)[/tex]:
[tex]\[ y = \frac{3}{4}x - 3 - 3 \][/tex]
[tex]\[ y = \frac{3}{4}x - 6 \][/tex]
Thus, the equation of the line passing through [tex]\((4, -3)\)[/tex] and perpendicular to the line [tex]\( 3y + 4x = 7 \)[/tex] is:
[tex]\[ y = \frac{3}{4}x - 6 \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.