Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which solid has a larger surface area, let's carefully examine the problem.
Step-by-Step Solution:
1. Understanding the Conversion Factor:
- The given conversion factor is [tex]\(\frac{3.28 \text{ ft}}{1 \text{ m}}\)[/tex]. This means 1 meter is equivalent to 3.28 feet.
2. Dimensions of the Solids:
- Let's assume Solid A has a side length of 1 meter.
- Solid B has a side length of 3.28 feet.
3. Convert the Side Length of Solid B to Meters:
- To compare the surface areas directly, we need both side lengths in the same unit. Convert Solid B's side length from feet to meters:
[tex]\[ \text{Side length of Solid B in meters} = \frac{3.28 \text{ ft}}{3.28 \text{ ft/m}} = 1 \text{ m} \][/tex]
4. Calculate the Surface Area of each Solid:
- The surface area [tex]\(S\)[/tex] of a cube with side length [tex]\(a\)[/tex] is given by:
[tex]\[ S = 6a^2 \][/tex]
- Surface Area of Solid A (side length = 1 m):
[tex]\[ S_A = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
- Surface Area of Solid B (side length = 1 m):
[tex]\[ S_B = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
5. Compare the Surface Areas:
- Surface area of Solid A: [tex]\(6 \text{ m}^2\)[/tex]
- Surface area of Solid B: [tex]\(6 \text{ m}^2\)[/tex]
Since both solids have the same surface area, the answer is:
C. They are the same size.
Step-by-Step Solution:
1. Understanding the Conversion Factor:
- The given conversion factor is [tex]\(\frac{3.28 \text{ ft}}{1 \text{ m}}\)[/tex]. This means 1 meter is equivalent to 3.28 feet.
2. Dimensions of the Solids:
- Let's assume Solid A has a side length of 1 meter.
- Solid B has a side length of 3.28 feet.
3. Convert the Side Length of Solid B to Meters:
- To compare the surface areas directly, we need both side lengths in the same unit. Convert Solid B's side length from feet to meters:
[tex]\[ \text{Side length of Solid B in meters} = \frac{3.28 \text{ ft}}{3.28 \text{ ft/m}} = 1 \text{ m} \][/tex]
4. Calculate the Surface Area of each Solid:
- The surface area [tex]\(S\)[/tex] of a cube with side length [tex]\(a\)[/tex] is given by:
[tex]\[ S = 6a^2 \][/tex]
- Surface Area of Solid A (side length = 1 m):
[tex]\[ S_A = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
- Surface Area of Solid B (side length = 1 m):
[tex]\[ S_B = 6 \times (1 \text{ m})^2 = 6 \text{ m}^2 \][/tex]
5. Compare the Surface Areas:
- Surface area of Solid A: [tex]\(6 \text{ m}^2\)[/tex]
- Surface area of Solid B: [tex]\(6 \text{ m}^2\)[/tex]
Since both solids have the same surface area, the answer is:
C. They are the same size.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.