Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the function that represents [tex]\( f(x) \)[/tex] based on the given points, we follow these steps:
### Step 1: Identify Two Points
We are given the following points from the table:
- [tex]\((-5, -126)\)[/tex]
- [tex]\((4, 0)\)[/tex]
- [tex]\((9, 70)\)[/tex]
- [tex]\((16, 168)\)[/tex]
### Step 2: Calculate the Slope (m)
Select two points, let’s use [tex]\((-5, -126)\)[/tex] and [tex]\((4, 0)\)[/tex].
The formula for the slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substitute the given points:
[tex]\[ m = \frac{0 - (-126)}{4 - (-5)} = \frac{126}{9} = 14 \][/tex]
So, the slope [tex]\( m \)[/tex] is 14.
### Step 3: Find the y-intercept (b)
We use the slope [tex]\( m \)[/tex] and one of the points to find the y-intercept [tex]\( b \)[/tex]. Let’s use the point [tex]\((4, 0)\)[/tex].
The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( m = 14 \)[/tex], [tex]\( x = 4 \)[/tex], and [tex]\( y = 0 \)[/tex]:
[tex]\[ 0 = 14 \cdot 4 + b \][/tex]
[tex]\[ 0 = 56 + b \][/tex]
[tex]\[ b = -56 \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is -56.
### Step 4: Write the Equation
Now, we have the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex]. Substitute these values into the slope-intercept form of a linear equation:
[tex]\[ f(x) = 14x - 56 \][/tex]
### Final Answer
Therefore, the function that represents [tex]\( f \)[/tex] is:
[tex]\[ f(x) = 14x - 56 \][/tex]
### Answer Selection
From the options provided in your question, the correct answer is:
[tex]\[ f(x) = 14x - 56 \][/tex]
So the complete function is:
[tex]\[ f(x) = 14 \text{ (京) } \][/tex]
Choose [tex]\( 14x - 56 \)[/tex].
### Step 1: Identify Two Points
We are given the following points from the table:
- [tex]\((-5, -126)\)[/tex]
- [tex]\((4, 0)\)[/tex]
- [tex]\((9, 70)\)[/tex]
- [tex]\((16, 168)\)[/tex]
### Step 2: Calculate the Slope (m)
Select two points, let’s use [tex]\((-5, -126)\)[/tex] and [tex]\((4, 0)\)[/tex].
The formula for the slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substitute the given points:
[tex]\[ m = \frac{0 - (-126)}{4 - (-5)} = \frac{126}{9} = 14 \][/tex]
So, the slope [tex]\( m \)[/tex] is 14.
### Step 3: Find the y-intercept (b)
We use the slope [tex]\( m \)[/tex] and one of the points to find the y-intercept [tex]\( b \)[/tex]. Let’s use the point [tex]\((4, 0)\)[/tex].
The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
Substitute [tex]\( m = 14 \)[/tex], [tex]\( x = 4 \)[/tex], and [tex]\( y = 0 \)[/tex]:
[tex]\[ 0 = 14 \cdot 4 + b \][/tex]
[tex]\[ 0 = 56 + b \][/tex]
[tex]\[ b = -56 \][/tex]
So, the y-intercept [tex]\( b \)[/tex] is -56.
### Step 4: Write the Equation
Now, we have the slope [tex]\( m \)[/tex] and the y-intercept [tex]\( b \)[/tex]. Substitute these values into the slope-intercept form of a linear equation:
[tex]\[ f(x) = 14x - 56 \][/tex]
### Final Answer
Therefore, the function that represents [tex]\( f \)[/tex] is:
[tex]\[ f(x) = 14x - 56 \][/tex]
### Answer Selection
From the options provided in your question, the correct answer is:
[tex]\[ f(x) = 14x - 56 \][/tex]
So the complete function is:
[tex]\[ f(x) = 14 \text{ (京) } \][/tex]
Choose [tex]\( 14x - 56 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.