Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Alright, let's go through the process of solving this question step-by-step.
### Understanding the Problem
We are given two z-scores, [tex]\( z = 0.37 \)[/tex] and [tex]\( z = 1.65 \)[/tex], and we need to find the percentage of observations that lie between these two z-scores in a standard normal distribution.
### Standard Normal Distribution
A standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1. The z-score represents the number of standard deviations a point is from the mean.
### Z-Scores and Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) for a z-score gives us the probability that a standard normal random variable will be less than or equal to that z-score.
### Finding Probabilities
1. For [tex]\( z = 0.37 \)[/tex]:
The CDF value (probability) corresponding to [tex]\( z = 0.37 \)[/tex] is approximately 0.6443 (or 64.43%).
2. For [tex]\( z = 1.65 \)[/tex]:
The CDF value (probability) corresponding to [tex]\( z = 1.65 \)[/tex] is approximately 0.9505 (or 95.05%).
### Calculating the Percentage Between the Two Z-Scores
The percentage of observations that lie between [tex]\( z = 0.37 \)[/tex] and [tex]\( z = 1.65 \)[/tex] is found by subtracting the probability at [tex]\( z = 0.37 \)[/tex] from the probability at [tex]\( z = 1.65 \)[/tex] and then converting this probability to a percentage.
1. Subtracting the Probabilities:
[tex]\( 0.9505 - 0.6443 = 0.3062 \)[/tex]
2. Converting to Percentage:
[tex]\( 0.3062 \times 100 = 30.62\% \)[/tex]
### Conclusion
Therefore, the percentage of observations that lie between [tex]\( z = 0.37 \)[/tex] and [tex]\( z = 1.65 \)[/tex] in a standard normal distribution is [tex]\( 30.62\% \)[/tex].
Given the options provided:
[tex]\( 30.62 \% \)[/tex]
[tex]\( 40.52 \% \)[/tex]
[tex]\( 59.48 \% \)[/tex]
[tex]\( 69.38 \% \)[/tex]
The correct answer is:
[tex]\[ \boxed{30.62\%} \][/tex]
### Understanding the Problem
We are given two z-scores, [tex]\( z = 0.37 \)[/tex] and [tex]\( z = 1.65 \)[/tex], and we need to find the percentage of observations that lie between these two z-scores in a standard normal distribution.
### Standard Normal Distribution
A standard normal distribution is a normal distribution with a mean of 0 and a standard deviation of 1. The z-score represents the number of standard deviations a point is from the mean.
### Z-Scores and Cumulative Distribution Function (CDF)
The cumulative distribution function (CDF) for a z-score gives us the probability that a standard normal random variable will be less than or equal to that z-score.
### Finding Probabilities
1. For [tex]\( z = 0.37 \)[/tex]:
The CDF value (probability) corresponding to [tex]\( z = 0.37 \)[/tex] is approximately 0.6443 (or 64.43%).
2. For [tex]\( z = 1.65 \)[/tex]:
The CDF value (probability) corresponding to [tex]\( z = 1.65 \)[/tex] is approximately 0.9505 (or 95.05%).
### Calculating the Percentage Between the Two Z-Scores
The percentage of observations that lie between [tex]\( z = 0.37 \)[/tex] and [tex]\( z = 1.65 \)[/tex] is found by subtracting the probability at [tex]\( z = 0.37 \)[/tex] from the probability at [tex]\( z = 1.65 \)[/tex] and then converting this probability to a percentage.
1. Subtracting the Probabilities:
[tex]\( 0.9505 - 0.6443 = 0.3062 \)[/tex]
2. Converting to Percentage:
[tex]\( 0.3062 \times 100 = 30.62\% \)[/tex]
### Conclusion
Therefore, the percentage of observations that lie between [tex]\( z = 0.37 \)[/tex] and [tex]\( z = 1.65 \)[/tex] in a standard normal distribution is [tex]\( 30.62\% \)[/tex].
Given the options provided:
[tex]\( 30.62 \% \)[/tex]
[tex]\( 40.52 \% \)[/tex]
[tex]\( 59.48 \% \)[/tex]
[tex]\( 69.38 \% \)[/tex]
The correct answer is:
[tex]\[ \boxed{30.62\%} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.