Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve this problem, we need to create an equation that models the relationship between the base and height of the triangle and then relate it to the given area. Let's go through the problem step-by-step:
1. Understand the problem:
- The height of the triangle is [tex]\(2\)[/tex] less than [tex]\(5\)[/tex] times its base.
- The base of the triangle is [tex]\(x\)[/tex] feet.
- The area of the triangle is [tex]\(12\)[/tex] square feet.
2. Express the height in terms of [tex]\(x\)[/tex]:
The height [tex]\(h\)[/tex] can be written as:
[tex]\[ h = 5x - 2 \][/tex]
3. Write the formula for the area of a triangle:
The area [tex]\(A\)[/tex] of a triangle is given by:
[tex]\[ A = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Substitute the base [tex]\(x\)[/tex] and the height [tex]\(5x - 2\)[/tex] into the formula:
[tex]\[ 12 = \frac{1}{2} \times x \times (5x - 2) \][/tex]
4. Simplify the equation:
Multiply both sides by [tex]\(2\)[/tex] to clear the fraction:
[tex]\[ 24 = x \times (5x - 2) \][/tex]
Distribute [tex]\(x\)[/tex] on the right side:
[tex]\[ 24 = 5x^2 - 2x \][/tex]
5. Rearrange the equation into standard quadratic form:
Subtract [tex]\(24\)[/tex] from both sides to set the equation to [tex]\(0\)[/tex]:
[tex]\[ 5x^2 - 2x - 24 = 0 \][/tex]
6. Identify the correct equation from the options:
Let's compare our resulting equation with the given options:
- [tex]\(5x^2 - 2x - 12 = 0\)[/tex]
- [tex]\(5x^2 - 2x - 24 = 0\)[/tex]
- [tex]\(25x^2 - 10x - 24 = 0\)[/tex]
- [tex]\(5x^2 - 2x - 6 = 0\)[/tex]
The equation we derived matches option B:
[tex]\[ 5x^2 - 2x - 24 = 0 \][/tex]
So, the correct equation that models this situation is:
[tex]\[ \boxed{5x^2 - 2x - 24 = 0} \][/tex]
1. Understand the problem:
- The height of the triangle is [tex]\(2\)[/tex] less than [tex]\(5\)[/tex] times its base.
- The base of the triangle is [tex]\(x\)[/tex] feet.
- The area of the triangle is [tex]\(12\)[/tex] square feet.
2. Express the height in terms of [tex]\(x\)[/tex]:
The height [tex]\(h\)[/tex] can be written as:
[tex]\[ h = 5x - 2 \][/tex]
3. Write the formula for the area of a triangle:
The area [tex]\(A\)[/tex] of a triangle is given by:
[tex]\[ A = \frac{1}{2} \times \text{base} \times \text{height} \][/tex]
Substitute the base [tex]\(x\)[/tex] and the height [tex]\(5x - 2\)[/tex] into the formula:
[tex]\[ 12 = \frac{1}{2} \times x \times (5x - 2) \][/tex]
4. Simplify the equation:
Multiply both sides by [tex]\(2\)[/tex] to clear the fraction:
[tex]\[ 24 = x \times (5x - 2) \][/tex]
Distribute [tex]\(x\)[/tex] on the right side:
[tex]\[ 24 = 5x^2 - 2x \][/tex]
5. Rearrange the equation into standard quadratic form:
Subtract [tex]\(24\)[/tex] from both sides to set the equation to [tex]\(0\)[/tex]:
[tex]\[ 5x^2 - 2x - 24 = 0 \][/tex]
6. Identify the correct equation from the options:
Let's compare our resulting equation with the given options:
- [tex]\(5x^2 - 2x - 12 = 0\)[/tex]
- [tex]\(5x^2 - 2x - 24 = 0\)[/tex]
- [tex]\(25x^2 - 10x - 24 = 0\)[/tex]
- [tex]\(5x^2 - 2x - 6 = 0\)[/tex]
The equation we derived matches option B:
[tex]\[ 5x^2 - 2x - 24 = 0 \][/tex]
So, the correct equation that models this situation is:
[tex]\[ \boxed{5x^2 - 2x - 24 = 0} \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.