Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Given that [tex]\(-3+i\)[/tex] is a root of the polynomial function [tex]\(f(x)\)[/tex], we need to identify which other number must also be a root of [tex]\(f(x)\)[/tex].
For polynomials with real coefficients, if a complex number [tex]\(a+bi\)[/tex] (where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(b \neq 0\)[/tex]) is a root, then its complex conjugate [tex]\(a-bi\)[/tex] must also be a root. This happens because the coefficients of the polynomial are real.
Given that the root is [tex]\(-3+i\)[/tex]:
1. The real part of the root is [tex]\(-3\)[/tex].
2. The imaginary part of the root is [tex]\(i\)[/tex].
The complex conjugate of [tex]\(-3+i\)[/tex] is obtained by changing the sign of the imaginary part:
[tex]\[ -3+i \rightarrow -3-i \][/tex]
Therefore, [tex]\(-3-i\)[/tex] must also be a root of the polynomial [tex]\(f(x)\)[/tex].
So the correct answer is:
[tex]\(-3-i\)[/tex]
For polynomials with real coefficients, if a complex number [tex]\(a+bi\)[/tex] (where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are real numbers and [tex]\(b \neq 0\)[/tex]) is a root, then its complex conjugate [tex]\(a-bi\)[/tex] must also be a root. This happens because the coefficients of the polynomial are real.
Given that the root is [tex]\(-3+i\)[/tex]:
1. The real part of the root is [tex]\(-3\)[/tex].
2. The imaginary part of the root is [tex]\(i\)[/tex].
The complex conjugate of [tex]\(-3+i\)[/tex] is obtained by changing the sign of the imaginary part:
[tex]\[ -3+i \rightarrow -3-i \][/tex]
Therefore, [tex]\(-3-i\)[/tex] must also be a root of the polynomial [tex]\(f(x)\)[/tex].
So the correct answer is:
[tex]\(-3-i\)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.