Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the system of linear equations:
[tex]\[ \left\{ \begin{array}{l} -x + y = 1 \\ 2x + 5y = 1 \end{array} \right. \][/tex]
we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously. Here's a step-by-step solution:
1. Rewrite the first equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = x + 1 \][/tex]
2. Substitute this expression for [tex]\( y \)[/tex] into the second equation:
[tex]\[ 2x + 5(x + 1) = 1 \][/tex]
This simplifies to:
[tex]\[ 2x + 5x + 5 = 1 \][/tex]
Combining like terms, we get:
[tex]\[ 7x + 5 = 1 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 7x + 5 = 1 \][/tex]
Subtract 5 from both sides:
[tex]\[ 7x = -4 \][/tex]
Divide by 7:
[tex]\[ x = -\frac{4}{7} \][/tex]
4. Substitute the value of [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex] from step 1:
[tex]\[ y = x + 1 = -\frac{4}{7} + 1 \][/tex]
Convert 1 into a fraction with a denominator of 7:
[tex]\[ y = -\frac{4}{7} + \frac{7}{7} \][/tex]
Combine the fractions:
[tex]\[ y = \frac{3}{7} \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = -\frac{4}{7}, \quad y = \frac{3}{7} \][/tex]
So, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations are [tex]\(\left( -\frac{4}{7}, \frac{3}{7} \right)\)[/tex].
[tex]\[ \left\{ \begin{array}{l} -x + y = 1 \\ 2x + 5y = 1 \end{array} \right. \][/tex]
we need to find the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations simultaneously. Here's a step-by-step solution:
1. Rewrite the first equation for [tex]\( y \)[/tex] in terms of [tex]\( x \)[/tex]:
[tex]\[ y = x + 1 \][/tex]
2. Substitute this expression for [tex]\( y \)[/tex] into the second equation:
[tex]\[ 2x + 5(x + 1) = 1 \][/tex]
This simplifies to:
[tex]\[ 2x + 5x + 5 = 1 \][/tex]
Combining like terms, we get:
[tex]\[ 7x + 5 = 1 \][/tex]
3. Solve for [tex]\( x \)[/tex]:
[tex]\[ 7x + 5 = 1 \][/tex]
Subtract 5 from both sides:
[tex]\[ 7x = -4 \][/tex]
Divide by 7:
[tex]\[ x = -\frac{4}{7} \][/tex]
4. Substitute the value of [tex]\( x \)[/tex] back into the expression for [tex]\( y \)[/tex] from step 1:
[tex]\[ y = x + 1 = -\frac{4}{7} + 1 \][/tex]
Convert 1 into a fraction with a denominator of 7:
[tex]\[ y = -\frac{4}{7} + \frac{7}{7} \][/tex]
Combine the fractions:
[tex]\[ y = \frac{3}{7} \][/tex]
Therefore, the solution to the system of equations is:
[tex]\[ x = -\frac{4}{7}, \quad y = \frac{3}{7} \][/tex]
So, the values of [tex]\( x \)[/tex] and [tex]\( y \)[/tex] that satisfy both equations are [tex]\(\left( -\frac{4}{7}, \frac{3}{7} \right)\)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.