Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve the given compound inequality, we need to deal with both inequalities separately and then combine the results.
1. First inequality: [tex]\( 3x + 2 > 5 \)[/tex]
- Subtract 2 from both sides:
[tex]\[ 3x + 2 - 2 > 5 - 2 \implies 3x > 3 \][/tex]
- Divide both sides by 3:
[tex]\[ \frac{3x}{3} > \frac{3}{3} \implies x > 1 \][/tex]
2. Second inequality: [tex]\( 3x \leq 9 \)[/tex]
- Divide both sides by 3:
[tex]\[ \frac{3x}{3} \leq \frac{9}{3} \implies x \leq 3 \][/tex]
3. Combining the inequalities:
[tex]\[ 1 < x \leq 3 \][/tex]
This means that [tex]\( x \)[/tex] must be greater than 1 but less than or equal to 3.
4. Graphing this inequality on a number line:
- An open circle on 1, indicating that 1 is not included in the solution set.
- A closed circle on 3, indicating that 3 is included in the solution set.
- Shading in between, covering all values between 1 and 3.
So, the correct description of the graph of the compound inequality is:
A number line with an open circle on 1, a closed circle on 3, and shading in between.
1. First inequality: [tex]\( 3x + 2 > 5 \)[/tex]
- Subtract 2 from both sides:
[tex]\[ 3x + 2 - 2 > 5 - 2 \implies 3x > 3 \][/tex]
- Divide both sides by 3:
[tex]\[ \frac{3x}{3} > \frac{3}{3} \implies x > 1 \][/tex]
2. Second inequality: [tex]\( 3x \leq 9 \)[/tex]
- Divide both sides by 3:
[tex]\[ \frac{3x}{3} \leq \frac{9}{3} \implies x \leq 3 \][/tex]
3. Combining the inequalities:
[tex]\[ 1 < x \leq 3 \][/tex]
This means that [tex]\( x \)[/tex] must be greater than 1 but less than or equal to 3.
4. Graphing this inequality on a number line:
- An open circle on 1, indicating that 1 is not included in the solution set.
- A closed circle on 3, indicating that 3 is included in the solution set.
- Shading in between, covering all values between 1 and 3.
So, the correct description of the graph of the compound inequality is:
A number line with an open circle on 1, a closed circle on 3, and shading in between.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.