Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To solve this problem, we need to analyze the slopes of the given lines in the [tex]\(xy\)[/tex]-plane and compare them. We are given two lines:
1. [tex]\( y = mx - 4 \)[/tex]
2. [tex]\( y = x - 4 \)[/tex]
### Step-by-Step Solution:
1. Identify the slopes:
- The slope of a line in the form [tex]\( y = mx + b \)[/tex] is given by the coefficient of [tex]\( x \)[/tex], which is [tex]\( m \)[/tex].
- The slope of the line [tex]\( y = mx - 4 \)[/tex] is [tex]\( m \)[/tex].
- The slope of the line [tex]\( y = x - 4 \)[/tex] is [tex]\( 1 \)[/tex] since it can be written as [tex]\( y = 1x - 4 \)[/tex].
2. Compare the slopes:
- According to the problem, the slope of the line [tex]\( y = mx - 4 \)[/tex] is less than the slope of the line [tex]\( y = x - 4 \)[/tex].
Therefore, we can write the inequality:
[tex]\[ m < 1 \][/tex]
3. Interpret the inequality:
- This inequality [tex]\( m < 1 \)[/tex] means that the value of [tex]\( m \)[/tex] must be less than [tex]\( 1 \)[/tex].
### Conclusion:
The correct interpretation of the question is that for the slope of the line [tex]\( y = mx - 4 \)[/tex] to be less than the slope of the line [tex]\( y = x - 4 \)[/tex], the value of [tex]\( m \)[/tex] must be less than [tex]\( 1 \)[/tex].
Thus, the answer is:
[tex]\[ m < 1 \][/tex]
1. [tex]\( y = mx - 4 \)[/tex]
2. [tex]\( y = x - 4 \)[/tex]
### Step-by-Step Solution:
1. Identify the slopes:
- The slope of a line in the form [tex]\( y = mx + b \)[/tex] is given by the coefficient of [tex]\( x \)[/tex], which is [tex]\( m \)[/tex].
- The slope of the line [tex]\( y = mx - 4 \)[/tex] is [tex]\( m \)[/tex].
- The slope of the line [tex]\( y = x - 4 \)[/tex] is [tex]\( 1 \)[/tex] since it can be written as [tex]\( y = 1x - 4 \)[/tex].
2. Compare the slopes:
- According to the problem, the slope of the line [tex]\( y = mx - 4 \)[/tex] is less than the slope of the line [tex]\( y = x - 4 \)[/tex].
Therefore, we can write the inequality:
[tex]\[ m < 1 \][/tex]
3. Interpret the inequality:
- This inequality [tex]\( m < 1 \)[/tex] means that the value of [tex]\( m \)[/tex] must be less than [tex]\( 1 \)[/tex].
### Conclusion:
The correct interpretation of the question is that for the slope of the line [tex]\( y = mx - 4 \)[/tex] to be less than the slope of the line [tex]\( y = x - 4 \)[/tex], the value of [tex]\( m \)[/tex] must be less than [tex]\( 1 \)[/tex].
Thus, the answer is:
[tex]\[ m < 1 \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.