Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine which ordered pair [tex]\((x, y)\)[/tex] satisfies both inequalities, we need to check each one step by step. The inequalities are:
1. [tex]\( y > -2x + 3 \)[/tex]
2. [tex]\( y \leq x - 2 \)[/tex]
Let's test each given pair:
1. Pair [tex]\((0,0)\)[/tex]:
- Inequality 1: [tex]\( 0 > -2(0) + 3 \Rightarrow 0 > 3\)[/tex] (False)
- Since it fails the first inequality, no need to check the second one.
2. Pair [tex]\((0,-1)\)[/tex]:
- Inequality 1: [tex]\( -1 > -2(0) + 3 \Rightarrow -1 > 3\)[/tex] (False)
- Since it fails the first inequality, no need to check the second one.
3. Pair [tex]\((1,1)\)[/tex]:
- Inequality 1: [tex]\( 1 > -2(1) + 3 \Rightarrow 1 > 1\)[/tex] (False)
- Since it fails the first inequality, no need to check the second one.
4. Pair [tex]\((3,0)\)[/tex]:
- Inequality 1: [tex]\( 0 > -2(3) + 3 \Rightarrow 0 > -6 + 3 \Rightarrow 0 > -3\)[/tex] (True)
- Since it satisfies the first inequality, we check the second:
- Inequality 2: [tex]\( 0 \leq 3 - 2 \Rightarrow 0 \leq 1\)[/tex] (True)
Therefore, the ordered pair [tex]\((3, 0)\)[/tex] makes both inequalities true. The solution is:
[tex]\[ (3, 0) \][/tex]
1. [tex]\( y > -2x + 3 \)[/tex]
2. [tex]\( y \leq x - 2 \)[/tex]
Let's test each given pair:
1. Pair [tex]\((0,0)\)[/tex]:
- Inequality 1: [tex]\( 0 > -2(0) + 3 \Rightarrow 0 > 3\)[/tex] (False)
- Since it fails the first inequality, no need to check the second one.
2. Pair [tex]\((0,-1)\)[/tex]:
- Inequality 1: [tex]\( -1 > -2(0) + 3 \Rightarrow -1 > 3\)[/tex] (False)
- Since it fails the first inequality, no need to check the second one.
3. Pair [tex]\((1,1)\)[/tex]:
- Inequality 1: [tex]\( 1 > -2(1) + 3 \Rightarrow 1 > 1\)[/tex] (False)
- Since it fails the first inequality, no need to check the second one.
4. Pair [tex]\((3,0)\)[/tex]:
- Inequality 1: [tex]\( 0 > -2(3) + 3 \Rightarrow 0 > -6 + 3 \Rightarrow 0 > -3\)[/tex] (True)
- Since it satisfies the first inequality, we check the second:
- Inequality 2: [tex]\( 0 \leq 3 - 2 \Rightarrow 0 \leq 1\)[/tex] (True)
Therefore, the ordered pair [tex]\((3, 0)\)[/tex] makes both inequalities true. The solution is:
[tex]\[ (3, 0) \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.