Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine whether the point [tex]\((3, -2)\)[/tex] lies within the solution set of the given system of linear inequalities:
1. First inequality: [tex]\( y < -3 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \\ -2 < -3 \][/tex]
- This statement is false because [tex]\(-2\)[/tex] is not less than [tex]\(-3\)[/tex].
2. Second inequality: [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \quad \text{and} \quad x = 3 \\ -2 \leq \frac{2}{3} \cdot 3 - 4 \][/tex]
- Calculating the right-hand side:
[tex]\[ \frac{2}{3} \cdot 3 = 2 \\ 2 - 4 = -2 \][/tex]
- Therefore, the inequality becomes:
[tex]\[ -2 \leq -2 \][/tex]
- This statement is true because [tex]\(-2\)[/tex] is equal to [tex]\(-2\)[/tex].
Combining the results, the point [tex]\((3, -2)\)[/tex] does not satisfy the first inequality [tex]\( y < -3 \)[/tex] but does satisfy the second inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex].
Therefore, the point [tex]\((3, -2)\)[/tex] lies in the solution set of the inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex] but not in the solution set of the inequality [tex]\( y < -3 \)[/tex].
1. First inequality: [tex]\( y < -3 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \\ -2 < -3 \][/tex]
- This statement is false because [tex]\(-2\)[/tex] is not less than [tex]\(-3\)[/tex].
2. Second inequality: [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex]
- We substitute the point [tex]\((3, -2)\)[/tex] into the inequality:
[tex]\[ y = -2 \quad \text{and} \quad x = 3 \\ -2 \leq \frac{2}{3} \cdot 3 - 4 \][/tex]
- Calculating the right-hand side:
[tex]\[ \frac{2}{3} \cdot 3 = 2 \\ 2 - 4 = -2 \][/tex]
- Therefore, the inequality becomes:
[tex]\[ -2 \leq -2 \][/tex]
- This statement is true because [tex]\(-2\)[/tex] is equal to [tex]\(-2\)[/tex].
Combining the results, the point [tex]\((3, -2)\)[/tex] does not satisfy the first inequality [tex]\( y < -3 \)[/tex] but does satisfy the second inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex].
Therefore, the point [tex]\((3, -2)\)[/tex] lies in the solution set of the inequality [tex]\( y \leq \frac{2}{3} x - 4 \)[/tex] but not in the solution set of the inequality [tex]\( y < -3 \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.