Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve this, we need to determine the average rate of change of the distance [tex]\( d(t) \)[/tex] between [tex]\( t = 2 \)[/tex] seconds and [tex]\( t = 6 \)[/tex] seconds. The average rate of change of a function over an interval [tex]\([t1, t2]\)[/tex] is given by the formula:
[tex]\[ \frac{d(t2) - d(t1)}{t2 - t1} \][/tex]
Given the table:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{seconds} & \text{meters} \\ \hline 2 & 64 \\ \hline 4 & 256 \\ \hline 6 & 576 \\ \hline 8 & 1024 \\ \hline \end{tabular} \][/tex]
Here, [tex]\( t1 = 2 \)[/tex] seconds and [tex]\( t2 = 6 \)[/tex] seconds. Correspondingly, [tex]\( d(t1) = 64 \)[/tex] meters and [tex]\( d(t2) = 576 \)[/tex] meters.
Plug these values into the formula:
[tex]\[ \frac{d(t2) - d(t1)}{t2 - t1} = \frac{576 - 64}{6 - 2} \][/tex]
Calculate the numerator:
[tex]\[ 576 - 64 = 512 \][/tex]
Calculate the denominator:
[tex]\[ 6 - 2 = 4 \][/tex]
Now divide the numerator by the denominator:
[tex]\[ \frac{512}{4} = 128 \][/tex]
Hence, the average rate of change of [tex]\( d(t) \)[/tex] between 2 seconds and 6 seconds is [tex]\( 128 \)[/tex] meters per second.
The value [tex]\( 128 \)[/tex] meters per second represents the average speed of the object between [tex]\( t = 2 \)[/tex] seconds and [tex]\( t = 6 \)[/tex] seconds.
Therefore, the correct answer is:
[tex]\[ \boxed{128 \text{ m/s}; \text{ it represents the average speed of the object between 2 seconds and 6 seconds}} \][/tex]
[tex]\[ \frac{d(t2) - d(t1)}{t2 - t1} \][/tex]
Given the table:
[tex]\[ \begin{tabular}{|c|c|} \hline \text{seconds} & \text{meters} \\ \hline 2 & 64 \\ \hline 4 & 256 \\ \hline 6 & 576 \\ \hline 8 & 1024 \\ \hline \end{tabular} \][/tex]
Here, [tex]\( t1 = 2 \)[/tex] seconds and [tex]\( t2 = 6 \)[/tex] seconds. Correspondingly, [tex]\( d(t1) = 64 \)[/tex] meters and [tex]\( d(t2) = 576 \)[/tex] meters.
Plug these values into the formula:
[tex]\[ \frac{d(t2) - d(t1)}{t2 - t1} = \frac{576 - 64}{6 - 2} \][/tex]
Calculate the numerator:
[tex]\[ 576 - 64 = 512 \][/tex]
Calculate the denominator:
[tex]\[ 6 - 2 = 4 \][/tex]
Now divide the numerator by the denominator:
[tex]\[ \frac{512}{4} = 128 \][/tex]
Hence, the average rate of change of [tex]\( d(t) \)[/tex] between 2 seconds and 6 seconds is [tex]\( 128 \)[/tex] meters per second.
The value [tex]\( 128 \)[/tex] meters per second represents the average speed of the object between [tex]\( t = 2 \)[/tex] seconds and [tex]\( t = 6 \)[/tex] seconds.
Therefore, the correct answer is:
[tex]\[ \boxed{128 \text{ m/s}; \text{ it represents the average speed of the object between 2 seconds and 6 seconds}} \][/tex]
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.