Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

The table below shows the distance [tex]\( d(t) \)[/tex] in meters that an object travels in [tex]\( t \)[/tex] seconds:

[tex]\[
\begin{tabular}{|c|c|}
\hline
(seconds) & \text{Distance } d(t) \text{ (meters)} \\
\hline
2 & 64 \\
\hline
4 & 256 \\
\hline
6 & 576 \\
\hline
8 & 1024 \\
\hline
\end{tabular}
\][/tex]

What is the average rate of change of [tex]\( d(t) \)[/tex] between 2 seconds and 6 seconds, and what does it represent?

A. [tex]\( 128 \, \text{m/s} \)[/tex]; it represents the average speed of the object between 2 seconds and 6 seconds.

B. [tex]\( 80 \, \text{m/s} \)[/tex]; it represents the average speed of the object between 2 seconds and 6 seconds.

C. [tex]\( 128 \, \text{m/s} \)[/tex]; it represents the average distance traveled by the object between 2 seconds and 6 seconds.

D. [tex]\( 80 \, \text{m/s} \)[/tex]; it represents the average distance traveled by the object between 2 seconds and 6 seconds.

Sagot :

To solve this, we need to determine the average rate of change of the distance [tex]\( d(t) \)[/tex] between [tex]\( t = 2 \)[/tex] seconds and [tex]\( t = 6 \)[/tex] seconds. The average rate of change of a function over an interval [tex]\([t1, t2]\)[/tex] is given by the formula:

[tex]\[ \frac{d(t2) - d(t1)}{t2 - t1} \][/tex]

Given the table:

[tex]\[ \begin{tabular}{|c|c|} \hline \text{seconds} & \text{meters} \\ \hline 2 & 64 \\ \hline 4 & 256 \\ \hline 6 & 576 \\ \hline 8 & 1024 \\ \hline \end{tabular} \][/tex]

Here, [tex]\( t1 = 2 \)[/tex] seconds and [tex]\( t2 = 6 \)[/tex] seconds. Correspondingly, [tex]\( d(t1) = 64 \)[/tex] meters and [tex]\( d(t2) = 576 \)[/tex] meters.

Plug these values into the formula:

[tex]\[ \frac{d(t2) - d(t1)}{t2 - t1} = \frac{576 - 64}{6 - 2} \][/tex]

Calculate the numerator:

[tex]\[ 576 - 64 = 512 \][/tex]

Calculate the denominator:

[tex]\[ 6 - 2 = 4 \][/tex]

Now divide the numerator by the denominator:

[tex]\[ \frac{512}{4} = 128 \][/tex]

Hence, the average rate of change of [tex]\( d(t) \)[/tex] between 2 seconds and 6 seconds is [tex]\( 128 \)[/tex] meters per second.

The value [tex]\( 128 \)[/tex] meters per second represents the average speed of the object between [tex]\( t = 2 \)[/tex] seconds and [tex]\( t = 6 \)[/tex] seconds.

Therefore, the correct answer is:
[tex]\[ \boxed{128 \text{ m/s}; \text{ it represents the average speed of the object between 2 seconds and 6 seconds}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.