At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the problem step-by-step.
### Part (a): Finding the [tex]$z$[/tex]-score
Given the information:
- Mean score ([tex]\(\mu\)[/tex]) = 77
- Standard deviation ([tex]\(\sigma\)[/tex]) = 9
- Nicole's score ([tex]\(X\)[/tex]) = 70
The formula to calculate the [tex]$z$[/tex]-score is:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
Substituting the values:
[tex]\[ z = \frac{70 - 77}{9} \][/tex]
[tex]\[ z = \frac{-7}{9} \][/tex]
[tex]\[ z = -0.78 \][/tex]
So the [tex]$z$[/tex]-score of Nicole's exam score is:
[tex]\[ z = -0.78 \][/tex]
### Part (b): Interpreting the [tex]$z$[/tex]-score
A [tex]$z$[/tex]-score tells us how many standard deviations a particular score is from the mean. The [tex]$z$[/tex]-score in this case is [tex]\(-0.78\)[/tex], which indicates that Nicole's score is below the mean. To express this in terms of a positive number of standard deviations:
- Take the absolute value of the [tex]$z$[/tex]-score: [tex]\(|-0.78| = 0.78\)[/tex]
- Nicole's score is 0.78 standard deviations below the mean.
The interpretation will be:
Nicole's exam score was [tex]\(0.78\)[/tex] standard deviations [tex]\(\text{below}\)[/tex] the mean exam score among all students in the course.
### Part (a): Finding the [tex]$z$[/tex]-score
Given the information:
- Mean score ([tex]\(\mu\)[/tex]) = 77
- Standard deviation ([tex]\(\sigma\)[/tex]) = 9
- Nicole's score ([tex]\(X\)[/tex]) = 70
The formula to calculate the [tex]$z$[/tex]-score is:
[tex]\[ z = \frac{X - \mu}{\sigma} \][/tex]
Substituting the values:
[tex]\[ z = \frac{70 - 77}{9} \][/tex]
[tex]\[ z = \frac{-7}{9} \][/tex]
[tex]\[ z = -0.78 \][/tex]
So the [tex]$z$[/tex]-score of Nicole's exam score is:
[tex]\[ z = -0.78 \][/tex]
### Part (b): Interpreting the [tex]$z$[/tex]-score
A [tex]$z$[/tex]-score tells us how many standard deviations a particular score is from the mean. The [tex]$z$[/tex]-score in this case is [tex]\(-0.78\)[/tex], which indicates that Nicole's score is below the mean. To express this in terms of a positive number of standard deviations:
- Take the absolute value of the [tex]$z$[/tex]-score: [tex]\(|-0.78| = 0.78\)[/tex]
- Nicole's score is 0.78 standard deviations below the mean.
The interpretation will be:
Nicole's exam score was [tex]\(0.78\)[/tex] standard deviations [tex]\(\text{below}\)[/tex] the mean exam score among all students in the course.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.